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CONTENTS il

This course will cover a selection of basic topics in commutative algebra.
I will be assuming knowledge of a first course in commutative algebra, as in
the book of Atiyah-MacDonald [1]. T will also assume knowledge of Tor and
Ext. Some of topics which will covered may include Cohen-Macaulay rings,
Gorenstein rings, regular rings, Grobner bases, the module of differentials, class
groups, Hilbert functions, Grothendieck groups, projective modules, tight clo-
sure, and basic element theory (see [4]). Eisenbud’s book [3], the book of Bruns
and Herzog [2], and Matsumura’s book [5] are all good reference books for the
course, but there is no book required for the course.
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Chapter 1

Hilbert Functions and
Multiplicities

Through out these notes, we will need the concept of a graded object. A graded
ring R = @i>0 R; is a commutative ring with identity, decomposed as a direct
sum of abelian groups with

Ri-R; C Riyj.

In particular, each R; is an Rg-module and Ry is a commutative ring itself
(1 € Ry). Likewise, a graded module M = @, _, M, is an R-module, decomposed
as a direct sum of abelian groups with

i€L

Ry - Mj; © My ;.

Each M,, is an Ryp-module.

If Ris a graded ring and M, N are graded R-modules, then an R-homomorphism
f: M — N is said to be homogeneous of degree k if f(M,) C M, for all n.
Homogeneous maps are very desirable, so we define a convention to transform
graded maps in to homogeneous maps. By twist, denoted M (n), we mean a new
graded module (the same as M with out grading), but

M(’I’L) = Mi+n~
Example 1. Let R be a graded ring. The new ring R(n) is a graded free

module, isomorphic to R, but has a generator in degree —n. So, R(—n) has a
generator in degree n.

1 Hilbert Functions

In the following, we denote the length of an R-module M by Ag(M). For more
information on length, see [1].
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Definition. Let R is a graded ring and M a graded R-module with finite length.
The Hilbert series of M is

Hy(t) =Y A, (M)t
€L

1.1 Examples

Before we begin an in-depth study of the Hilbert series, we consider a few
examples.

Example 2. Let R = k[z1,...,24] be a polynomial ring over a field k with
deg(x;) =1 for all i = 1...d. Here we have that

R, = k(monomials of degree n)

= k(a2 | D ai=n).

It is a standard fact that the length of a vector space over a field is the same as
the vector space dimension. Thus, dimg(R,,) = ("j;f;l) and the Hilbert series
is given by
= /n4+d—-1\
Hg(t) = '
=3 ("0
Example 3. Let k[x,y] be a polynomial ring over a field k& and define
R=klz!, o' Yy, ... oyt Y] C K[z, ).

Assume that each element of {z!, 21y, ..., zy'~1 y'} has degree one. Notice
that Do
dimy (R;) = (Z +1 B ) =il +1,
which gives us a Hilbert series of
Hp(t) =Y (il + 1)t'.
i=0

Further, we are able to write Hr(t) as a rational function by using differentia-
tion:

o0

Hg(t)=> 1(i+1)t' — (- 1) iti
=0 =0
:l(Zt’)l—(l—l)Zti

_l(1>’_l—1

1—-t 1-—-t¢

o -1

Ta-02 1-t
(I—1)t+1
(1—1t)?
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Example 4. Let R be a hypersurface of degree m. That is, let f € S,, where
S =k[z1,...,2q] and degz; = 1. Now Set R = S/(f). To find Hg(t), consider
the short exact sequence

0—>S(m) L8 —=8/(f) —>o0.

Notice that multiplication by f is a degree zero homomorphism. Since length
is additive, the Hilbert series is

Hp(t) = Hs(t) = Hg(—m)(t)
1 g

1-n* (1=
To see the Hilbert series of S(—m), notice that
Hg(_my(t) =Y dimg S(—m);t’
i€z
= Z dlmk Si,mti
i€l

= Z dlmk Sj thrm

j=i—mez

=t"Hg(t)

Remark 1. Suppose that S = k[z1, ..., x,] with the usual grading. Let fi,..., f-
be a regular sequence with deg(f;) = d;. It is natural to guess that

— tds
Hs(f1,...50)(8) = I_M

Notice that if 7 = n, then S/(f1,..., fn) has finite length. Then Hg/(y, ... 1) (t)
is a polynomial! (Total length being the product of the degrees of f;.) Trying
the guess we find that

Hp(t) = H((ll_;)i) = E(l e )}
So, Hr(1) = didz -+~ dp.

Example 5. Let R = k[xz, y] be a polynomial ring over a field k in two variables.
Let deg(z) = 2 and deg(y) = 3. Calculating the length of each graded piece
gives us the following:

i=|0 1 2 3 4 5 6 7 8 9 10 11 12 13
dmy(R)=]1 0 1 1 1 1 2 1 2 2

Given the short exact sequence

0—— R(-2) =R k[y] 0,
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we have that Hp(t) = t* Hg(t) + Hypy(t). Since Hyp = 1/(1 —t*), we have
_
(1—2)(1—13)
Remark 2. Consider R = k[z,y]/J where J is the set of all differences of poly-
nomials of the same degree. Notice that dimg(R;) = 1 for all ¢ > 0. It can be
shown that K. 4]
z,y 2 43
R=——""— ~ k[t t°].
@y M)

Example 6. Another type of grading is multi-degree. For an example of this,
let R = k[z,y] be a polynomial ring in two variables. We let the variables have
the following degrees in N2:

Hg(t) =

deg(z) = (1,0)

deg(y) = (0,1).

Here we have the R(; ;) = k(z'y?). In this case,
Hp(t,s)=1+t+s+t*>+st+s°4---

1.2 The Hilbert-Samuel Polynomial

Before we define the Hilbert-Samuel polynomial, we need some propositions.
Proposition 1. Let R be a graded ring. The following are equivalent:
(1) R is noetherian;
(2) Ry is noetherian and Ry = @;>1R; is a finitely generated ideal;
(3) Ry is noetherian and R ~ Rglx1,...,x,]/I with deg(z;) = k; where I is
a homogeneous ideal.

Proof. (3) = (1): This follows from the Hilbert basis theorem.

(1) = (2): The object Ry is an ideal and hence is finitely generated as R is
noetherian. We thus have that Ry ~ R/R is noetherian as well.

(2) = (3): Choose zi,...,2, € Ry with deg(z;) = k; such that Ry =
Rz + -+ -+ Rz,. We claim that R = Rg[z1,. .., 2n]. As we naturally have that
R D Rylz1,. -+, 2], it is enough to show R; C Ry[z1,. .., z,] for all i. To do this
we induct on ¢. The ¢ = 0 is clear. Let ¢ > 0 and suppose the claim is true up
toi—1. Let f € Ry and write it as

n
F=2 s
j=1

where s; € R. If we restrict to the degree 7 part,

n
=2 e
=1

where s; € R;_y,. By induction we are done because s; € Rolz1,- - 2n) O
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Remark 3. If M is an R-module, then M is naturally an R/ann(M)-module.

Proposition 2. Let R be a noetherian graded ring and M a finitely generated
graded R-module. Then for alln € Z, M,, is a finitely generated Ry-module. In
particular, if Rg is artinian, then the length of M, is finite.

Proof. Consider the submodule of M defined by Msy,, := ®;>,M;. Since M is
noetherian, My, is a finitely generated graded R-module. Therefore we have
that M,, := Ms,/M>,11 is also a finitely generated graded R-module. By
Remark 3, we have that M, is a finitely generated graded R/ann(M,,)-module
as well. But Ry = ann(M,,), hence M, is a finitely generated Ry = R/R-
module. O

Theorem 3. Let R be a graded noetherian ring with Ry artinian and let M be a
finitely generated graded R-module. Write R = Ry[z1, ..., zs] with deg(z;) = k;.

Then
fu(t)
[T (1 —t*)
where fu(t) € Z[t,t7Y]. If M is non-negatively graded, then we have that
fu(t) € 2.
Proof. By Proposition 2, the length of M,, is finite for all n. Induct on s. For

the s = 0 case, let R = Ry and assume that M is finitely generated over Ry.
Thus M = @i___ M; with A\(M;) < oo and

i=—p

Hy(t) =

Hy () = > MMt € Z]t, 7).
Assume that s > 0 and consider the following exact sequence:

z

00— K —= M(~k;) —=M C 0

where K and C' are the kernel and cokernel of the map defined by multiplication
by zs. Both K and C are finitely generated R-modules. Note that z; K = z,C =
0. Therefore K and C are modules over Ry[z],...,2,_1] = R/zsR. We have
that

Hy(t) + Hg (t) = Hpyr(—1,)(t) + He(t)
= ths Hp(t) + Ho(t).

Hence, we can solve for Hy(t) to get

) = Pt~ Pt
_ fe(®) = fr(D)
B [T (1 —tk)

If M is non-negatively graded, then C is non-negatively graded as well. Thus

fo(t) is in Z[t]. Also, M (—ks) is non-negatively graded since ks > 0. Therefore
K is also non-negatively graded, thus fx(t) is also in Z][¢]. O
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Corollary 4. Suppose that in Theorem 3 we have k; =1 fori=1,...,s and
that M is non-negatively graded. Then there exists a polynomial, Pyr(x) in Q[z]
such that N(M,,) = Ppr(n) for all n >> 0. Moreover, deg(Par) < s — 1.

Definition. The polynomial Py/(x) is called the Hilbert-Samuel polynomial.

Proof. Note that we have for some f(t) in Z[t],

)

g;)\(Mi)t =G (1.1)
_ s+1—1\,
_f(t)i;( o1 )t (1.2)

If deg(f) = N, we can write
f)=ant™ +---+a,

where a; € Z. The coefficient of ¢t" is a polynomial in n of degree s — 1 with
coefficients in Q. In particular,

=3 (177

7=0
Here we have that
s—1
stn—j—1\ (s+n—j—1)(s+n—j—2)---(n—j+1)
s—1 B (s—1)!
nsfl +1 .
= —— + lower terms.
(s —1)!

We now set

O

Example 7. Let R = k[z,y] and assume that deg(z) = 2 and deg(y) = 3. Here
we have that

1

mz(1+t2+t4+---)(1+t3+t6+...)

Hy(t) =

Thus the length is given by the coefficients of ¢, that is,
A(Rn) = [{(a,b) | 2a + 3b = n}|

and this is not a polynomial but a quasi-polynomial.
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Fact. Recall that

(a:—l—i) (a:+i)(a:+i—1)~-~(x+1).

1 i!

Then {(T'H) ©, are a Q-basis of Q[z].

Example 8. Notice that
2_ o7 T\
v 2) "1

We can use this to find the sum of the first n squares. That is,

14224382 +42 442 =) a?

%)+ ()

5 n;l) N (nJlrl>

_ 2n(n—1)(n—2)  3n(n-—1)
6 6

_ (2n + 1)(6n(n+ 1))

Remark 4. We have 37, (th) = ("zﬁrl)
Remark 5. Notice that {(*T*) 14 > 0} is a Q-basis of Q[z].

Remark 6. If f(z) € Q[z] and we write:
=0 N7

and and We assume b, # 0, then f(z) is a polynomial of degree n with leading
coePﬁment . Moreover, if we set:

s) = Z £,
then g¢(s) is a polynomial of degree n + 1 with leading coefficient syl +1)
Proof. Clearly deg f = n and the leading coefficient is % Consider now
> ] 47 - s+7+1
=Sri=23 () =2 () -2 (1),
=0 =0 j=0 = =0 ‘7 7=0 J +1

which is now a polynomial of degree n + 1 and leading coefficient O

("+1)'

Remark 7. Let f(x) € Qz] be a polynomial of degree n. Write f(z) =
S ob (mjf) If f(m) € N for all m >> 0, then b; € Z for all j and b,, > 0.
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2 Multiplicities

Throughout this section let (R, m, k) be a noetherian local ring, where m denotes
the unique maximal ideal and k = R/m. Let I C R be an m-primary ideal (i.e.
VT =m) and let M € Mod™®(R). Define

]7l
g R =G =P 1

n>0

where I = R, which is called the associated graded ring of R with respect to I.
It is a ring with the product

In/InJrl X Im/[m+1 N In+m/[n+m+l
(r*,s*) — r*s*

on the graded components.

Remark 8. G = Gy[G1] is a noetherian graded ring. This is because Go = R/ is
artinian, hence noetherian. Also R is noetherian, therefore I is finitely generated
and so the ideal G4 = EB,LZJ"/I"'*‘1 = (G - (G is finitely generated too. We
conclude by Proposition 1.

Definition. Let I C R and M be as above. Define
"M
n>0
This is a graded G-module generated in degree zero, so it is finitely generated:
M(I) =G (M(I)o) -

Corollary 5. A (I"M/I"**M) = Q(n) is a polynomial in n (for n >> 0)
of degree at most u(I) — 1, where p(I) = A(I/mI) is the minimal number of
generators of the ideal I.

Proof. Since G is generated in degree one, by Corollary 4 the degree of the
polynomial is at most u(G1) — 1. But

w(Gr) = u(I/1%) = (D),
where the last equality follows by NAK (Nakayama’s Lemma). O

Corollary 6. With the same assumptions as above we have that N(M/I™M)
is a polynomial in n, for n >> 0, having positive leading coefficient and degree
bounded by u(I).

Proof. Notice that
n—1 ;
M
MM/IM) =3 X (I+M> '
=

Then we conclude by Remark 7 and Corollary 5. O
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Definition. We set Py jr(n) to be the polynomial such that

M
PI’N[(TL):/\<W> forn >> 0

and we call it the Hilbert polynomial of M with respect to I.
Theorem 7. deg Pr s = dim M.
Before proving it we need some more results.

Lemma 8. Let the notation be as above and assume

0 N M L 0

is a short exact sequence of finitely generated R-modules. Then
(1) deg Pr pr = max {deg Pr n,deg Pr 1.}
(2) deg (Prv — Pr.v — Pr,r) < deg Proas.
Proof. (1) Tensor the short exact sequence with R/I"™, then we get:

N M L
I"N "M "L

() < (7w) 2 ()

This implies (for n >> 0):

M N L
— < —_— —
deg Py pr = deg ()\ (I”M)) < deg ()\ (I"N) +)\<I"L)>
= d A l d A L = {deg P, deg Py 1.}
= max eg "N ,deg Inl = max eg I,N, eg I,Ly -

Conversely there exists a short exact sequence:

and hence

N M L
I"M NN 1M "L

and also, by Artin-Rees Theorem, there exists k € N such that for all n > k

I"MNAN=I"*I*MnN)CI"*N.

N N
) > -
A (I"M N N) Z A <1n—kN>

This implies
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for n >> 0. Therefore, for such n:

M L N L N
= R — _ > JE— EEE—
A(InM) A(InL) +/\(I“MQN> _)\<I”L> +/\<I”’€N>

But P; n(n—k) and Pr y(n) have same degree and leading coefficient (the first
is just a translation of the second one). Hence

M N L
= _— > _— —_— =
deg P pr = deg ()\ (I”M)) > deg ()\ (I”—kN) +A (I"L))
N L
= max < deg | A kN ,deg [ A Tl = max {deg Pr n,deg Pr,.}.

Therefore (1) follows. For (2) we have

L N M L N
— — | < <
Mimz) 2 () =2 (o) = () 2 ()

therefore the leading coefficients have to cancel, i.e.

LC(Prym) = LC(Prn + Pr1),

where LC denotes the leading coefficient of a polynomial. This is of course
equivalent to (2). O

We are now ready to prove Theorem 7.

Proof of Theorem 7. Take a prime filtration of M and apply Lemma 8. Then,
without loss of generality we can assume M = R/p, where p is a prime ideal.
Furthermore, passing from R to R/annM = R/p we can directly assume that
M = R is a domain. Set d = dim R and choose a sop (system of parameters)
J = (z1,...,24) C I. Then there exists [ € N such that I' C J, and so

I"mcJgrcI® forallneN.

() () ()

Pr r(n) < Py r(n) < Prr(in).

This implies

and so

But deg Pr r(n) = deg Pr r(In) since [ € N is just a constant, therefore deg Py r =
deg Pr.r. But we know that

deg Pr,r = deg Pyr < p(J) = d.

Conversely, we induct on d. If d = 0 then clearly deg P; r > d. Let d > 0 and
pick z € m, x # 0. Remember that R is a domain, hence we have a short exact
sequence:

0 R—=R R:=R/xR——0.
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Notice that deg(Pr,r — Pr,r — Py ) < deg Pr,r by Lemma 8 (2), therefore
d—1=dimR = deg P < deg PR,
that is d < deg Py g. O

Definition. Let (R, m) be a d-dimensional noetherian local ring, let v/I = m
be an m-primary ideal and let M € Mod®(R). Then the multiplicity of M (with
respect to I) is
AAAN(M/I"M
e(I; M) := lim —( / )

n—00 nd

If M = R we will denote e(I) := e(I; R).

Notation. Given a function f we say that a function g is O(f) if there exists
a constant C such that g(n) < Cf(n) for n >> 0.

Remark 9. e(I; M) € N and e(I; M) =0 if and only if dim M < dim R.
Proof. Set s :=dim M and d := dim R. In general s < d. Also

M o bS s s—1

with bs > 0, and therefore
dAXM/I"M)  dbs 4
nd g

Taking the limit shows that

+O(n?=57h).

0 s<d

Remark 10. Let t € N, t > 1. Then e(I*; M) = e(I; M)t?.
Proof. Assume dim M = dim R = d. We have seen that

M\ e M) 4 -1
)\(I”M)_ g HomT,

hence

e(l: e(l: )
A (Utz)‘fM) = A i 1 o=y = LI o),

This means
e(I'; M) = e(I; M)t?.

If dim M < dim R, then the equality still holds since e(I*; M) = e(I; M)
0.

o
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Remark 11. e(I; M) is additive on short exact sequences because of Lemma 8
(2)-
Remark 12. e(I) = e(I), where I = IR, since vI =m and so R/I" ~ R/I™.

Theorem 9. If z1,...,x4 is a reqular sequence, then

R
gl Tl

Equivalently, (z)"/(z)"*! is a free R/(z)-module of rank (";ﬁ;l).

grg) R =~

For the proof see Corollary 22.

Remark 13. If z1,...,24 is an sop for R as above and it is a regular sequence
(this is equivalent to say that R is Cohen-Macaulay), then:

(@) = (15)

Moreover, if x1,..., x4 is just an sop, then

(@) < (15)

Proof. By Theorem 9 we have

o) =2 () -5 () (0
5) (52 () [ o]

- 8a() 5 (5).

For the general inequality notice that in any case there exists a surjective ring
homomorphism

Hence

B=R/(z)[T,..., T4 — gy R=G

and therefore

i — lim /\(Bn)(d_l)! im )\(Gn)(d_l)!
A(2) = B NG

In this case we multiplied by (d — 1)! because we know that if A\(B/B,) is
eventually a polynomial of degree d, then A(B,,) is eventually a polynomial of
degree d — 1, and the leading coefficient, that gives the multiplicity, doesn’t
change. Notice now that dim R = dim G. In fact, more generally for vI = m,

n—o00 nd—1 ~ nSoo nd—1
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A(I™/I"*1) is eventually the Hilbert Polynomial of the associated graded ring
G = gr;R of degree dimG — 1. But also, for n >> 0, S0V A(I1/T't!) =
A(R/I™) = Pr g is a polynomial of degree both dim G by Remark 6 and dim R
by Theorem 7. Therefore, back to our case:

A (R) > im MEEZN_ o),

(z ~ n—oo nd—1

The last inequality is again because A(R/(z)") = 31— M(z)*/(z)"t!) and so

A(z)™/(z)™*!) = M(G,,) is eventually a polynomial of degree d — 1 that gives
the multiplicity of (). O

Remark 14. Let (R, m, k) be a RLR (regular local ring), then e(m) = 1.

Proof. By Remark 13 e(m) = A(R/m) = dimy k = 1. O
Definition. e(m) =: e(R) is often called the multiplicity of the ring R.
Remark 15. Let (R, m, k) be artinian, then e(R) = A\(R).

Proof. 1t follow also by Remark 13, but there is also an easy direct proof. Since
R is artinian we have m™ = 0 for n >> 0, hence

e(R) = lim 0! M(R)n® = A\(R).

n—oo

O

Example 9. Let R = k[z,y]/(z?, xy), then dim R = 1. Also A(R,) =1 for all
n € N, therefore
|
e(R) = lim Ot Alfn)

n—00 n0

=1

but R is clearly not regular (it is not even Cohen-Macaulay). We will see that
the converse to Remark 14, that is e(R) = 1 = R is a RLR, holds if R is
unmixed, and it is a theorem of Nagata.

Theorem 10 (Associativity formula). Let (R,m) be a local noetherian ring, let
VI =m be an m-primary ideal and let M € Mod®(R). Then

e(I; M) = > e(I; R/p) AR, (Mp).

p € SpecR
dim R/p = dim R
Proof. Take a prime filtration of M:
My C M C...C Ms=M,
with M;1/M; ~ R/p; for some p; € SpecR. Multiplicity is additive on short
exact sequences, hence

s—1

e(I; M) = Ze(I;R/p»-

1=
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We just have to count how many times each p; appears in the prime filtration.
First notice that e(I; R/p;) = 0 unless dim R/p; = dim R, therefore

e(I; M) = > e(I; R/p;).

{i: dim R/p,=dim R}

Fix a p € SpecR such that dim R/p = dim R. Localizing at p we have

(f) ={ G =rt) piir

since p is minimal (dim R/p = dim R) and we cannot have p; C p. Here k(p) =
Ry /pR, = (R/p)y is the residue field of the localzation R,. Now, localizing at
p the filtration:

(Mo)y € (M), C ... C M,

gives us a composition series of the Ry,-module M, and its length is both
AR, (M,) and the times p appears in the original filtration. Hence the asso-
ciativity formula follows. O

3 Superficial Elements

Let (R, m, k) be a Noetherian local ring. Let f € m be a non zero element. We
want to understand how do e(R) and e(R/(f)) relate to each other. To do this
we need several tools. the relation between G = gr,,(R), G = gry(R) where

_R
R=7.

Definition. Let I C R be an ideal. The Rees ring of I is defined to be

R(I):=Relolel’. . . =1

n=0

Equivalently R(I) = R[It] as a subring of R][t]. Also, Proj(R(I)) is the blow up
of V(I) in Spec(R).

Remark 16. One can easily check that
R(I)

gri(R) ~R(I) ®g R/I ~ R

Definition. Let (R, m, k) be a Noetherian local ring and let I C R be an ideal.
Let f € R be a non zero element. Since R is local and Noetherian we have
MNysoI™ = (0), therefore there exists n € N such that f € I", but f ¢ I+t
Then the leading form of f in gr;R is defined to be

fr=1[flerm/mtt,

where [f] denotes the equivalence class of f inside I"/I"*1.
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Example 10. Consider m = (z,y) C R = k[[x,9]], and f = 22 —3® € R. Then,
grm(R) ~ k[[z,y]] and f* = (2% — y3)* = 2% € m?/m3. Notice that
R _ K,y
(f) 2=y
Set R:= R/(f) and m :=m/(f). One can prove that

ooy Kyl o gre(R)
grm(R)— (mg) — (f*)

Definition. Let (R,m, K) be a local ring. Set R(t) := R[t]mry) and m(t) :=
mR[t] gy Notice that

~ k[[t?, )]

R
mgg ~ E[tlepqoy =: k(t),

therefore (R(t), m(¢), k(t)) has infinite residue field. Also R — R(t) is a faithfully

flat extension.

Definition. Let (R, m, k) be a Noetherian local ring, and let I C R be an ideal.
Then an element x € I\ I? is said to be a superficial element for I (of degree 1)
if there exists ¢ € N such that

(I"tl.z)nI¢=1" foralln>ec.

Proposition 11. Let (R,m,k) be a Noetherian local ring. Assume that R
contains k, and also that k is infinite. Let I C R be an ideal. Then

(i) Superficial elements exists
(i) If x is superficial for I and furthermore x is a nonzero divisor in R, then

I g=T1" foralln >> 0.

Proof. (i) Set G := gr;(R). Consider a partial primary decomposition of (0) in
G:

(0)=gq1Ng2N...qNJ,
where q; are p;-primary ideals such that G4 < p; and J is the intersection of all
components containing a power of G (i.e. v/.J = G ). Note that p; NG # G1.
Therefore we can choose z € I\ I? such that z* € F/l = is not in p; for all
i=1,...,1L

Claim. x is superficial for I.
Proof of the Claim. Fix ¢ € N such that (G4)¢ C J, and notice that
GaN...qgnN(GH)°Can...qunJ =(0).

Now we induct on n > ¢, and we want to prove that (I"*!:z)NI¢ = I" for
n > c. Notice that we always have the inclusion I" C (I"*! : z) N I¢ for all
n > c¢. For the other inclusion:
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e If n = ¢ we clearly have the other inclusion as well.
e Ifn>c letye (" :z)Ulc Since ("1 :x) C (I": z), we have
ye(I":z)nI¢=1"""

where the last equality holds by induction. By way of contradiction assume
y ¢ I'. Then looking at the initial forms of x and y we get

x*e[/]2:G1 and y*EInil/In:Gn_1C(G1)C.
Observe that z*y* = 0, since xy € I"*!. So
v e(0:2) = (qr:a) N0 (@) (T 2) Can...Na

Therefore
y* S qlﬂ...ﬁqlﬁ(Gl)C: (0),

which is a contradiction. So y € I"™ and this proves the Claim.

(#4) Since z is a superficial element there exists ¢ € N such that
(It x)nIc=1m

In particular
"= (1"t oz)nI1cC (It x).

Conversely, let y € (I"*1 : ). Then
zy € I"M N (2) = () NI for n >> 0,

where the last equality follows from the Artin-Rees Lemma. Therefore xy = xzi
for some i € I~ and xz € (z)NI". Since z is a nonzero divisor in R, we get

y=rzieI"=" cI¢ forn >>0.
Hence y € (It :z)nI¢ = 1" O
Corollary 12. Let (R,m, k) be a Noetherian local ring and let I C R be an

ideal. let © € R be superficial for I. Set G = gri(R) and G = gry;)(R/(x)).
Then there exits a natural map

of degree 0, which is an isomorphism in all large degrees.
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Proof. Since x is superficial there exists ¢ € N such that (I" : z) N I¢ = ["~!
for all n > ¢. Hence for all n > 1 we have

cI" P C (I ) = (x) NI

Notice that clearly (G/(z*))o = R/I ~ (G)o. For all n > 1 we have a surjection

= pIn 1y [ (@) NI+ 1+~
"+ (z) _ (@
- (I7L+1 + (l‘)) - (G)n

To get an isomorphism we need x1"~! D (z) N I", since we have seen that the
other inclusion always holds. By Artin-Rees Lemma, there exists » € N such
that forn >r+c¢

()NI"=((z)NIN)I"" Czl°.

Let y € () N I", then y = xa for some a € I¢. But also (x) N I" = 2(I" : z),
hence y = b for some b € (I"™ : x). Therefore a —b € (0: ) C (I"™ : x), and
hence

aclIn(I™:x)=1""

by superficiality (since n > r 4+ ¢ > ¢). So, for n >> 0 (more precisely for
n > r + ¢), the above map is an isomorphism. O

Example 11. Let (R, m, k) be a regular local ring of dimension dim R = n.
Let G := grn(R) ~ k[x1,...,2,] and let f € m be an non zero element. Define

ord(f) :=max{n e N: f e m"}.
Notice that f* € m™/m"*!. Then

e(R/(f)) = ord(f).

Proof. Notice that f* is a nonzero divisor in G because it is a domain. Set
d := odd(f). It is easy to prove that, being f* a nonzero divisor, we have
mY: f=mV —d for all N > d. For N > d consider the exact sequence

W R R m
mV mV my mY + (f) ’

R miV—d R N+n-1
sothat)\<mN+(f)>:)\< ~—y ) But/\<mN>:< n ),Where
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n = dim R. Hence

/\<mN]j_(f)>:(N+:—1>_(N—d:L—n—1):

 (N4n-1)-....N (N—dtn—1)-...-(N—d)
a n! a n! -
:{N+<>N_ S R R }W(Nn_g):
dn% +O(N"2) = (‘iN_nl)! +O(N"2),

Therefore the multiplicity is
R . (n=1)! R
— =1 A =d.
’ ((f)) Noeo NPT (mN + (f))

Definition. Let (R, m, k) be a Noetherian local ring of dimension dim R = d.
Let I C R be an m-primary ideal. Then we can write

Pr(n) = A (ﬁ) — eo(I) (”;d> —eu(D) <”+;l_ 1) b (“Dea(D).

The integers e;(I), for j = 0,...,d are called the Hilbert coefficients of I. In
particular eqg(I) = e(I) is the multiplicity.

O

Proposition 13. Let (R,m,k) be a Noetherian local ring, and let I C R be
an m-primary ideal. Let x € R be a superficial for I, which is also a nonzero

divisor on R. Set R = R/(z) and I = I/(z). Then , e;%(I) = e;%(I) for all
0<j<d—1.

Proof. Set G := gr;(R), and G := gry(R). By Corollary 12, for n >> 0, there
is a short exact sequence:

¢

00— Gn(-1) == aG, Gn 0.
Notice that ) )
— — I R
MG ="\ (IM) = A <1n) :
j=0 j=0

Therefore, using the short exact sequence above, for n >> 0 we get:

A(ﬁ) —A(Ifl) ng(Gj)—TfA(Gj) :nz_:l)\(éj)—i-C:)\(

Jj=0 Jj=0

| =

~|

n)+c’



3 Superficial Elements 19

where C' is a constant that depends on the fact that the above sequence is exact
only for n >> 0. Hence we have

(E) () -1 Sl -

j=0 7=0
d—1
~(n—1—j+d
:Zej(l)( d*l >+C
7=0

Notice that

n—j+d\ (n—-1-j+d\ _(n—-1-j+d
d d N d—1 ’

therefore we get the following equality of polynomials

d d—1
—-1- d —-1- d
2"y e ve

Jj=0

“M

which implies that all the coefficients have to be the same. In particular e;(I) =
e;(I) forall j =0,...,d—1. O

Proposition 14. Let R C S be an extension of local Noetherian rings (or
graded rings with Ry = k = Sp) and mp (resp. mg ) be mazimal ideals. (For
the graded case, let mp = Ry, and mg = S;.) Further, let I be an mg-primary
ideal in R (homogeneous in the graded case). Assume that R is a domain and
that S is module finite over R. Letk = R/mp, L = S/mg, and F be the quotient
field of R. Set

r = rankg(S) = dim; S ®g F.
Then,
e(18;8) = &
Lemma 15. Given the notation in Proposition 14, if M is an S-module of
finite length, then Ag(M) = Ag(M) - [L : k].
Proof. Since length is additive and Ag(L) = [L : k], we have that

Ar(M) = As(M) - Ag(L) = As(M) - [L : k].

Proof of Proposition 14. We compute

es(18;8)n?

4 4+ 0(n% 1)

As(S/ImS) =
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where d = dim(S) = dim(R). On the other hand,
Ar(S/I™S) = As(S/I™S) - [L : kJ.

and 4
I.
Ar(S/I"S) = % + 0(n? ).

Comparing terms gives us that
er(I;S) = es(IS; S)[L : k.

It remains to prove that er(I;S) =r-er(I; R).
To prove this, chose an F-basis of S ®g F', say,

S1 Sy

T, ceey T.
Consider the R submodule of S, T = Rs; + ...+ Rs,. Let ¢ be the surjection
of R" onto T, sending the i*" basis element to s; for i = 1,...,r. Because

S®rF =F", p®1 is an isomorphism. Since ker(¢) and coker(¢) have smaller
dimension than d, we know that

er(l;S) = er(l; R")
=r-er(l;R).
O

Theorem 16 (Nagata). Let (R, m, k) be a Noetherian, local, formally unmized
ring of dimension dim R = d. Then e(R) =1 if and only if R is regular.

Proof. If R is regular, then clearly e(R) = 1. To prove the converse let us
assume that R contains a field (even if the theorem holds in the general case).
Also, we can assume that the residue field is infinite passing to R(t) = R[t|mg[.

_—

and complete R, since the multiplicity doesn’t change, and if R(t) is regular,
then R is regular as well. So without loss of generality R is a complete unmixed
local ring with infinite residue field. Using Associativity formula we have

L=e®)= S e(B/p)An,(Ry):
p € SpecR
dim R/p = dim R
Hence there exists a unique prime p such that dim R/p = dim R, and since R is
unmixed this is the only associated prime of R. Also A(R,) = 1 implies that R,
is a field, and hence R is a domain. Since |k| = 0o, choose a minimal reduction
(z1,...,24) of m. Because R is complete, using Cohen structure theorem, we
have a finite extension
S= k[[$1,...,{£d]] - R

and since both are domains, by Proposition 14, we have
1 =e(R) = e(S) - rankg(R) = rankg(R),

since S is regular, and so e(S) = 1. Therefore rankg(R) = 1, and hence R = S
is regular. O
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4 Integral Closure of Ideals

Definition. Let R be a ring and I an ideal of R. An element x is said to be
integral over I if = satisfies a monic equation

2" i i, =0

such that i; € I, The set of all integral elements is called the integral closure
of I and is denoted [

Proposition 17. The integral closure of an ideal is an ideal
Proof. This is a corollary to Exercise 16 O

Example 12. Let R = k[xz,y] be the polynomial ring in two variables over a
field k and I = (22, y?). Here we have that zy € I. To see this, notice that xy
satisfies the polynomial T? — z%y? € R[T]. It is worth noting that z2y? € I2.

Example 13. Let R = C[xy,...,x,] be the power series in n variables over
C and let f € R such that f(0) = 0. Then f is always integral over its partial

derivatives
of  of
Ox1' 0z, )

Example 14 (Dedekind-Mertens). Let R be a commutative ring and f, g two
elements of RJt], i.e.

F) = ant” + -+ ao;
g(t) = byt™ + -+ + bo,

If I is the content of the product fg, then a;b; is integral over I for all ¢,j. An
example of this is the following: let both f and g have degree one. We have that
I is the ideal generated by the coefficients of the product (a1t + ag) (b1t + bo).
That is,

I = (albl, llob()7 a1b0 + aobl).

Notice that
(a1b0)2 = (a1b0 + aobl)(albo) - (albl)(aobo).

As (a1bo + apb1) € I and (a1by)(agby) € I%, we have that a1by satisfies a degree
two monic polynomial in R[T].

Open Question. In the context Example 13, is f € m(a‘%, ey aif ) ?
To see an example of this question, let f = 2% + y* in the ring R = C[z, y].
Then of of
= =32" and - =4y’
o < an 3y Y

We thus see that 23 + y* € m(2?,y3) C m(a2,y3).
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Proposition 18. Let R be a noetherian ring and J C I ideals in R. The
following are equivalent:

(1) I CJ;

(2) R(I) is module-finite over R(J);

(3) I = JI"™1 over all n >> 0;

(4) there exists a k such that I™ C J"F for allm > k.
Further, if R is also local, the above are also equivalent to

(5) Let
_ RU)
D mR()

and define A to be the subring of F; generated by

=R/maI/mIo*/ml*a .-

J+ml
ml

CI/mI

over R/m. Then Fr is module-finite over A.

Proof. (1) & (2): Use Exercise 16 and the fact that R(I) is a finitely generated
as a ring over R(J) since I is finitely generated.
(3) = (4): Fix k such that I™ = JI"~! for all n > k. By induction,

Tl — gkl — g2pkil=2 00— glAlph=1 o gl
(4) = (2): Part (4) gives us that

R(J) € R(I) S R() - .

since R(j) is noetherian, we have that R(I) is finitely generated as a R(J)-
module.
(2) = (3): As R(I) is module-finite over R(.J), consider

R(I)=Roltol*t?e--- oItV o ...
R(J)=RoJteJ** -0 J VN e ..

Say the homogeneous generators uj,...,us are up to degree N in ¢, that is,
deg(u;) = d; where d; < N and

R(I) = R(J)us + - + R(J ) us.
So, we have that

ILtL C (JL_dltL_d1>U1 4 (JL_dStL_ds )U/5~
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Since up1 € It for all i = 1,..., s, we see that
7L C ghedipdi 4 gL—dspds.
But J C I, so for L larger than max{dy},
- c st crt.

(2) = (18): Assume that (R, m) is local. As R(J) C R([) is module-finite,
we have that
R() R

A= mR(I) NR(J) =~ mR(I)

:fl

is module-finite as well.

(18) = (3): Assume that (R, m) is local. Say Fy is generated over A by a
finite number of elements up to degree k. Just as in the proof of (2) = (3), this
means for n > k,

Im gty min

min mIn '
Thus, we have that I™ = JI"~! +mI” and hence by Nakayama’s lemma we see
that I" = JI" L. O

Definition. A local noetherian ring (R, m, k) is formally equidimensional if for
all minimal primes p of R, dim(R/p) = dim(R).

Theorem 19 (Rees). Let (R, m, k) be a formally equidimensional local noethe-
rian ring and J C I m-primary ideals. Then e(J) = e(I) if and only if I C J.
Remark 17. The fact that I C J implies equality of multiplicities does not
require formally equidimesional.

Remark 18. We will prove Theorem 19 only when R contains an infinite field.
The theorem is true otherwise, but is omitted from these notes.

Before we can prove Theorem 19, we will need the following lemma.

Lemma 20. Let (R, ml be a local noetherian ring of dimension d and suppose
that J C I. Then, I C J if and only if for all minimal primes p in R,

T+p J+p

p p

Proof. If we assume that I C J, we can use the same integral equation to obtain
the desired result.
Conversely, fix ¢ in I and consider the multiplicatively closed subset of R,

W= {f@) | f(t) =t" + 5t 4+ i}

Let Rad(R) denote the nilradical of R, that is, the intersection of all prime
ideals in R. If W NRad(R) # 0, then let f(i) be an element of Rad(R). Thus
there exists an N such that f(i)Y = 0 and hence i is integral over J.

If W N Rad(R) = 0, then there exists a prime g such that g N W = 0.
Therefore there exists a minimal prime p in R such that p N W = (). Thus, i is
not an element of J + p/p, a contradiction. O
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Proof of Theorem 19. First assume that I C .J. Thus there exists an [ such that
for all n > 1,
Jn g " g Jn—l g In—l.

Therefore
MR/JF) C NR/I™) C ANR/J™)

and hence we have that e(I) = e(J).
Now assume that e(I) = e(J) and that R contains an infinite filed. Not that

e(IR) = e(JR). Further, by Proposition 18, IR C JR if and only if there exists
an [ such that I"R C J* R for all n > {. Thus,

I"=I"RANRCJ"'RNR=J""

Applying the proposition once again yields the fact that I C J. So, without
losing any generality, R = R.
Using the associativity formula (Theorem 10),

e(I) = e(I; R/pARy);
e(J) =Y _e(J; R/p)ARy),

where p is a minimal prime in R such that dim(R/p) = dim(R). The fact
that J C I shows us e(J;R/p) > e(l;R/p). However, since R is formally
equidimensional, we have equality for all minimal primes p € R. By Lemma 20,
if
I+p T
p p

for all minimal primes p in R, then we have that I C J. Hence, we may assume
R is a complete local domain.

We now turn to a reduction of the ideals I and J. We can replace J by
a system of parameters (z1,...,24) C J. It is enough to show there exists a
system of parameters (z1,...,24) C J such that J C (x1,...,24). If so, then
we know by the easy direction that

€($17...,$d) = 6([)

But then, e(x1,...,2q4) = e(I). If we prove that I C (z1,...,24) then we are
able to deduce that I C J.
To do this, use Noether normalization on the fiber ring

R J J?
Fir==—p—a-—"——....
7T m ® mJ  mJ?
Keep in mind that F; is a finitely generated k algebra. By Noether’s normal-
ization,
klz3,...,z]] C Fy,
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where z} are elements of J/mJ. But lifting =} to x; € J, we may apply Propo-
sition 18 to see that J C (x1,...,x;).

Note that (z1,...,2;) C \/(xl, ..., x;) and hence (x1,...,2;) is m-primary
(this follows since v/J = m). Therefore, lgsd by Krull’s height theorem. But,

I = dim(Fy) < dim(gr;R) = d,

and hence [ = d. (To see this last fact, notice that gr ;R/mgr ;R ~ F.)

Thus, without losing any generality, we may assume that J is generated by
the system of parameters (x1,...,24). Next we make I as simple as possible.
Choose any y € I. It is enough to show that y € J. Thus, we can replace I by
(z1,...,24,y). Note that in this case,

e(r1,...,xq) = e(z1,...,2Y).

We are now able to make a further reduction on the rings. Since k C R, by
Cohen’s structure theorem, we can consider the extenstion

R 2 B=k[z1,...,z4,9]

| |
klzy,...,zq] = A

where R is finite over k[x1,...,2z4]. We may assume that R = B. To see this,
let the maximal ideal of B be n = (z1,...,24,y)B and let r = rankg(R). We
know that

er(I) =er(nR) =ep(n)-r

er(J) =er((z1,...,2q)R) = ep(x1,...,24) - T
and hence we have that er(z1,...,24) = ep(n). So, if we prove the theorem
is true for R = B, we get that y € (z1,...,24)B which implies that y €
(x1,...,24)R.

Now, R = k[z1,...,z4,y] is a complete domain of dimension d, 1,. ..,z is

an system of parameters, J = (x1,...,24), and I is the maximal ideal m. Note
that

R:k[[acl,...,ifd,Tﬂ/p

where p is a height one prime. But k[z1,...,24,T] is a unique factorization
domain and hence

p=T"+a T+ +a) = (f)
Now, e(m) = ord(f) and e(x1,...,24) = A(R/(x1,...,24)). As

R K[T]
(@1, ymq) TV

we have that e(z1,...,24) = I (here we are assuming that [ = ord(f)). This
implies that a; € (x1,...,74)", otherwise ord(f) < I. Since f(y) = 0, this shows
that y € (21,...,2q4). O
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5 Associated Graded Ring and Rees Algebra

Throughout this section let R be a noetherian ring. Let I C R be an ideal, then
we have already defined

G =g R=PI1 /1"
n>0

the associated graded ring of R with respect to I. We have also defined

R(I) ~ R[It] = @ I"t" C R[t]

the Rees ring of I. Notice that

~ RU)
Y= TR0

and often is more convenient to study R(I) instead of gr;R.

5.1 Equations defining Rees Algebras

Let I = (x1,...,2,) € R. Then there exists a graded surjective map

QP:R[Tla"an] _»R(I)
T, — x;t

Hence kerp C R[Ty,...,T,] is a homogeneous ideal, and if R itself is graded,
then ker ¢ is bigraded.

Remark 19. Set a := kerp. Then a is homogeneous and it is generated by
homogeneous polynomials F(T1,...,T,) (say deg F = d) such that

0=@(F(Ty,...,T,)) = Fzit,...,z,t) = t¢F(x1,...,2,),
that is a = (F € R[Th,...,T,) : F(z1,...,2,) =0).
Example 15. Let R = k[z,y| and let I = (z,3)? = (22, 2y, y?). Then
a= (yTy — aTs, yTs — 213, T — T\ T3).

Definition. Let a; = ”the ideal generated by all homogeneous polynomial of
degree at most 4”.

In the previous example a; = (yT1 — 2Tz, yT> — 2T3) and as = a.

Remark 20. Since R is noetherian, there exists N >> 0 such that ay = a, since
a is finitely generated.

Definition. I is said to be linear type if a = a;.
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Example 16. Present I = (z1,...,2,) C R:

A

R™ R" 1 0

€ —= T

and let A = (a;j), so that >, x;a;; = 0. Then it is easy to prove that

n
ap = (ZTza” :j=1,...,n> .
i=1

Definition. A sequence of elements x4, ..., z, is said to be a d-sequence if for
all7>0
(1, oym) s i) N (21, @0) = (X1, 0, T4),s

where we set xg = 0.

Example 17. Any regular sequence is a d-sequence since for all i > 0
(X1, ymi) s i1 = (1,0, 24).
Remark 21. If n =1, then x7 = z is a d-sequence if and only if
0:2=0:z°

In fact let x be a d-sequence, then (0 : x) N (z) = 0. Clearly 0 : z C 0 : 22
Let ax? = 0 then axz € (0 : ) N (z) = 0, that is @ € 0 : . Conversely let
0:2=0:22 andlet bz € (0: x)N(x). Hence bx?> =0, thatisb€ 0: 22 =0: z.
So bxr =0 and x is a d-sequence.

Example 18. Let R = k[z,y]/(2?,xy). Then y € R is not a regular sequence,
but it is a d-sequence since 0:y =0 : y? = zR.

Definition. Let F' € R[Ty,...,T,] be a homogeneous polynomial. Then we say
that F' has weight j if

F e (Tl,...,Tj) AN (Tl,...,Tj,l).
We denote j = wt(F).

Example 19. Let F = T2 + T1Ty + T* + TyT3 + TyTs € R[T1,...,Ts]. Then
wt(F) = 4 since
Fe (T17...,T4) N (Th...,Tg).

Theorem 21. Let x1,...,x, be a d-sequence and let I = (x1,...,x,). Then I
18 linear type.

Proof. By induction on both degree and weight we will prove the following
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Claim. If F(Ty,...,T,) is homogeneous of degree d > 1is such that F(z1,...,z,) €
(x1,...,x;)R, then there exists G(T4,...,T,) a form of degree d and weight at
most j such that FF — G € a;.

Proof of the Claim. Assume d = 1. By assumption there exists r; € R, for
1 <4 < j, such that

J
F(xh. .. ,xn) = Zrixi.
i=1
But deg F' =1, so set
J
G = Zriﬂ7
i=1
so that (F — G)(z1,...,z,) =0, that is F — G € a; and clearly wt(G) < j.
Assume now d > 1 and induct on the weight of F. If wt(F) < j, then set
G = F, so that clearly F — G € a;. Then suppose wt(F) = k > j and write
F=T.F + Fy,
where deg Fy = deg F} + 1 = d and wt(Fy) < k. Then

F(zy,...,zn) = xpFi(z1, ... 2p)+Fo (21, ... 20) € (21,...,2;)RC (21,...,25-1)R.

Since Fy(x1,...,2pn) € (1,...,2x_1) we have that
Fi(xy,...,20) € (z1, .-y 2p—1) s xg) N (X1, .oy 2p) = (X1, ..., Tp—1)
since x1,...,x, is a d-sequence. By induction on the degree there exists G of

degree d — 1 with wt(G1) < k — 1 and such that F; — G; € a;. Set
F/ = Tk:Gl + FQ.

Then F — F' = Ty(F — G1) € a;. Note that F(xy1,...,2,) = F'(x1,...,2,) €
(z1,...,z;) and wt(F') < k — 1 since wt(G1),wt(F2) < k — 1. By induction
on weight there exists G homogeneous of degree d, with wt(G) < j, such that
F’" — G € a;. Hence

F-G=(F-F)+(F -QG)€a.

Finally, the Claim implies the theorem with j = 0: let F' be a non zero
homogeneous polynomial of degree d > 1 such that F' € a, ie. F(x1,...,2,) =
0. Then there exists G homogeneous of degree d, with wt(G) < 0, such that
F =G € a;. But wt(G) =0, degG = d > 1 implies that G = 0. Therefore
F €a. O



5 Associated Graded Ring and Rees Algebra 29

Corollary 22. Let (R,m) be a noetherian local ring and let x1,...,xz, be a
reqular sequence. Then

i
(2)

Proof. If z1,...,x, is a regular sequence, then it is a d-sequence. Also a; is
generated by the Koszul relations x;T; — x;T; by Example 16. Therefore

gr (g R =~ [Ty, ...,T,]

R((2)) = R[EI’I;WT”] )
2% 9 1...Tp
T ...T,
Hence
o pe RU@) R[Ty,....T,] R
grg) R =~ (2)R((z)) (2) + 2 ><2( T1... T, ) @ [T1,...,T]
T ...T,
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6 Exercises

(1) Assume R is a noetherian and that M, N are finitely generated graded
R-modules. Prove that Hom

(2) Suppose that S = k[x1,...,x,] with the usual grading. Let f1,..., f, be
a regular sequence with deg(f;) = d;. Find Hg,(y,, .. 1, ().

(3) If R = k[x1,...,2,] is a polynomial ring in n variables with deg(z;) = d;,

then
1

[T =)

(4) Let R = ®;>0R; be a graded noetherian ring. Prove there exists and N
such that Ryx = (Ry)*X for all K > 0. That is, the subring

Hg(t) =

Ro® Ry ©® Ran ® -+ -
is generated in degree N.
(5) Let R be as in Exercise 4. Then R is integral and finite over @;>0Rn;.

(6) Let R = k[z1,...,zy,] with deg(x;) = k;. What is the least N that satisfies
Exercise 47

(7) Assume G is a noetherian graded ring, (Go, mg) is artinian local and G =
Go[G1]. Let m :=mp@® G ®. .. as G-module. Then clearly G/m ~ Gy/mg
is a field, and so m is maximal in G. Let R := G,. Prove that

gro.R=G.
(n.b. the fact that G is generated in degree one is crucial).

(8) Let (R, m) be a noetherian local ring and let I C R be an m-primary ideal.
Then

gryR~gr sR.

(9) Let (R, m, k) be a noetherian local ring, I C R an m-primary ideal. Prove
that:

gr;R is a domain = R is a domain.
e gr; R is integrally closed = R is integrally closed.
gr; R is CM (Cohen-Macaulay) = R is CM.

gr; R is Gorenstein = R is Gorenstein.

Is it true that if gr; R is a UFD then R is a UFD?

(10) Find an example (with prove) of a local domain such that the completion
(with respect to the maximal ideal) is not a domain. (Hint: By Exercises
8 and 9, if gr, R ~ grﬁl]% is a domain, then Risa domain, so a possible
example has to be such that gr, R is not a domain.)
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(11) Which Artinian local rings A with residue field C, can be embedded in
C[lt]]

) -
(12) If /I = m, then e(I, R) = e(IR(t), R(t)).

(13) Complete the proof of the fact that superficial element exits by proving
there exists @ € I\ I? such that z* is not in p; for all i = 1,2, ..., [.

(14) I C R, f € R. Suppose f € I9\ %1 TFAE:
(a) Forallm >d, I": f ="
(b) f*isa NZD in gry(R).

(15) (R,m,k) local f € m%\ mdtl. Assume f* is NZD in gr,,(R). Then
e(R/(f)) = de(R).

(16) Let J C I be ideal in a commutative ring R. Then I C J if and only if
R(I) is integral over R(J).



Chapter 2

Grothendieck Groups

Throughout this chapter R will always be a noetherian ring. Define H(R) to
be the free abelian group on the isomorphism classes of finitely generated R-
modules. Given M € Mod"®(R) denote < M > its class inside H(R), that is the
generator in H(R) corresponding to the isomorphism class of M. Define also
L(R) to be the subgroup of H(R) generated by elements

{<M>—-<M >—-<M>}

for which there exists a short exact sequence 0 - M; — M — Ms — 0. Finally
we define the Groethendieck Group of R to be

Give M € Mod™(R) write [M] for its class inside Gy (R).

Remark 22. If we have two short exact sequences

0 M, M Mo 0

and

0 M, N M, 0,
then we have [M] = [N] in Gy (R).

Remark 23. If we restrict to projective module and we do the same costruction,
we get the K-group Ko(R).

Question. Given M, N € Mod"®(R) when is [M] = [N]?

1 Basic Lemmas and Remarks

Lemma 23 (Filtration Lemma). Let M € Mod®(R) and suppose

0=MyCM, C...C M, =M
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is a filtration. Then

Proof. By induction on n. The step n =1 is trivial. Let n > 1 and consider

M

M M =
0 . o

0,

so that [M] = [M;] + [M/M;]. Then we have a filtration

of length n — 1. By induction we get

(M) = [My] + [M/My] = [M"“] .

M;
=0
O
Corollary 24. Gy (R) is generated by [R/p], for p € SpecR.
Proof. Take a prime filtration of M and apply the Filtration Lemma. O
Lemma 25 (Long Exact Sequence Lemma). Given an exact sequence
OHMHHMn_l MO 0,
then .
D (=D)rM] =0
i=0
Proof. By induction again. O

Lemma 26 (Additive Map Lemma). Suppose ¢ : Mod®(R) — Z is an additive
function on short exact sequences. Then there exists an induced homomorphism
g: GO (R) — 7

Proof. Given M € Mod'(R), the homomorphism & is defined to be
E(< M >)=¢e(M)

on elements of the basis of H(R). Since ¢ is additive on short exact sequences
we have (L(R)) = 0, hence there is an induced map € : Gy (R) — Z. O

Example 20. Let R be a PID. Then
Go (R) ~7

generated by [R].



34 Grothendieck Groups

Proof. By Corollary 24 we can consider just [R/p], with p prime in R. If p =0,
then [R/p] = [R]. If p # 0, then p = (x) for some = # 0, hence the following

sequence is exact

0 R—>R R/p 0,

so that in Gg (R) we have [R/p] = 0. Therefore Gy (R) ~ Z[R], but we still
have to prove that [R] is not a torsion element. Consider the rank function. By
Additive Map Lemma there exists a homomorphism

Go (R) Z
[M] > rank([M])

which is surjective since [R] — 1. So Go(R) cannot be torsion and hence
Go(R) = Z|R) ~ Z. 0

Example 21. Let (R, m, k) be a regular local ring. Then Go (R) = Z[R] ~ Z.

Proof. Given M € Mod®(R) there exists a free resolution

0 F, F, 1 . P Fy M 0
and hence, by Long Exact Sequence Lemma,
[M] = Z(—l)i[Fi] = <Z(—1)irankﬂ> [R].
i=0 i=0

Therefore Go (R) = Z[R] and, considering the rank function as in the previous
example, we get Go (R) ~ Z. O

Example 22. Let (R, m, k) be an artinian local ring. Then Gy (R) = Z[k] ~ Z.

Proof. By Corollary 24 we clearly get G (R) = Z[k]. Using the length function,
by Additive Map Lemma we get

Go(R) ——Z
[M] —— X([M])

which is surjective since A(k) = 1. Hence Gy (R) ~ Z and moreover [R] =
A(R)[K]. O

Question (H. Dao). Let (R, m,k) be a normal local ring, and assume k is an
algebraically closed field of characteristic zero, k C R. Also, assume Gy (R)®zQ
is a finite dimensional Q-vector space. Does R have rational singularities?
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Theorem 27. Let R be a noetherian ring and let I C R be nilpotent. Then the
map
J:Go(R/I) —= Gy (R)

[M]———[M]
18 an isomorphism.

Proof. First suppose we have shown the theorem when I? = 0. Then G (R/I) ~
Go (R/I?) since in R/I? clearly I? = 0. Similarly Gy (R/I?) ~ Go (R/I*) and
so on. For some n € N we have I" = 0, so that R/I"™ = R and hence we get the
following chain of isomorphisms:

~

Go (R/I) ——= Gy (R/I?) —= Go (R/I*) ——...... Go (R).

So suppose 12 = 0. Notice that under this assumption, given M € Mod™®(R),
both IM and M/IM are R/I-modules. Consider the map ¢ : Go(R) —
Go (R/I) given by

i([M]) = [IM] + [M/IM].

Claim. i : Gy (R) — Go (R/I) is well defined.
Proof of the Claim. On a basis {< M >: M € Mod®(R)} of Hy(R) define

i Ho(R) Go (R/T)
< M > [IM] + [M/IM]

and extend it to a group homomorphism. We need to prove that ¢'(L(R)) = 0.
Let

0 M,y M Mo, 0

be a short exact sequence of R-modules. Consider the following short exact
sequences of R/I-modules:

0——= M NIM IM IM, 0 (2.1)
Mi+1IM M Mo

0 T M T 0 (2.2)
MiNIM M M

O ;]‘Cfl 11\411 MlﬁIIM 0 (2'3)

0 IM, My NIM MOIM 0 (2.4)

Then by (2.1) and (2.2) we get

(< M >) = [IM] + [#7] = (M2 0 M)+ [100]) + ([0 + | P ]) =

= i'(< Mz >) + [My N IM] + [MEM]
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Notice that (M; + IM)/IM ~ M;/(M; NIM). Finally, by (2.3) and (2.4) we
have

M,
IM,

i'(< M >) =14 (< My >) + [IM;] + { } =d'(< My >) +i' (< My >).

Soi:Go(R) — Go (R/I) is well defined.
Now let [M] € Gy (R/I) and consider the composition (i o 5)([M]):
(i 0 j)([M]) = i([M]) = [IM] + [M/IM] = [M]
since M € Mod™®(R/I) and hence IM = 0. Similarly, for [M] € Gy (R):

Goat =3 (il + | 7y7] ) = 1+ | 77| =

simply using the short exact sequence 0 - IM — M — M/IM — 0. So j is
an isomorphism. O

Lemma 28 (Localization Lemma). Let R be a noetherian ring and W a mul-
tiplicatively closed set. Then there exists an exact sequence

D Go(Rr/p) —=Go(R) 2 Gy (Rw) —0
WNp#0

where o and B are defined as follows:

&M (p)] —— X[M(p)]

B
Proof. The first step is to show that
Tm(a) = ([M] | My = 0). (2.5)

If M is a R/p module and pnW # ), then clearly My, = 0 since p C ann(M).
Therefore
Im(a) C {[M] | Mw = 0).

To see the other direction, suppose that My, = 0. Since M is finitely
generated, we know that

Supp(M) = V(ann(M)).
In a prime filtration of M, say,

O=MycCcM;C---CM,=M
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where M, 1/M; ~ R/p;, we have that p, € Supp(M). Thus the annihilator of
M is contained in each p;. But My = 0 implies there exists w € W such that
wM = 0. In other words, w € p; for all 7 and hence p; "W # @ for all i as well.
This forces [R/p;] € Im(a) and by the Filtration lemma (Lemma 23) we have
that [M] € Im(«). This proves (2.5).

Next we show that ( is surjective. This is clear since every finitely generated
Ryy-module is of the form My, for some finitely generated R-module M. (Note
that 3 is well-defined as localization is flat.)

Observe that Im(a) C ker(f3) since My, = 0, that is, 8([M]) = 0. Abusing
notation, we now have the induced surjection

Go(R) 8
Ir(r)l(a) — Go (Rw) .

We want to show there exists a splitting ~y, that is, an inverse to 5. Define

Go (R)

7 H(Bw) —= 705

by the following construction.
Let (N) € H(Rw) and then choose an R-module M such that My ~ N.
Now define

F((N)) = [M] + Im(a).

To show this is well-defined, suppose Ly ~ N. We need to prove that [M]—[N]
is an element of Im(a). Since R is noetherian and all modules are finitely
generated, we have that

(HOT?’LR(]\j7 L))W >~ HomRW(Mw,Lw). (26)

As My =~ Ly, choose some fixed Ryy-isomorphism g. We can write g = £

where h € Hompg(M, L). Replacing g by wg we get that b

h
I S HomRW (Mw, Lw)

is an isomorphism. Consider the following exact sequences:

0 ——ker(h) — M ——Im(h) ——0

0 —— Im(h) —— L —— coker(h) — 0.
In Gy (R), we have that
[M] — [L] = [ker(h)] + [Im(h)] — [Im(h)] — [coker(h)] = [ker(h)] — [coker(h)].

But, (ker(h))w and (coker(h))w are zero since % is an isomorphism (use 2.5).

It follows that [M] — [L] is in the image of « and thus 7 is a well-defined map.
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Next, we would like to show that L(Rw ) C ker(7). Let

0 A

Ny 0 (2.7)
be a short exact sequence of Ry-modules. We claim that

FUNY) =7((N1)) +7((N2)).

To see this, let M and M; be finitely generated R-modules such that My, = Ny
and (Mz)w = No. Using (2.6), choose g : M — My such that £ = ¢’ where
w € W. Let M; :=ker(g) and consider the short exact sequence

0 M, M Im(g) 0. (2.8)

Since (Im(g))w = N2, we have that

F((N)) = [M] + Im(a);
F((N)2) = [Im(g)] + Im(a).

Thus, 7((N)) = [M;] + Im(«) since the localization of (2.8) at W yields the
short exact sequence (2.7). Therefore, F((N)) — F((N1)) — F((N2)) is a coset
of [M] — [Im(g)] — [M1] in Go (R) /Im(«) and hence is 0 as we have an exact
sequence. This shows that L(Rw ) C ker(7).

Finally, 7 induces a homomorphism v : Go (Rw) — Go (R) /Im(«). Let M
be a finitely generated R-module. We have that ~ - 8 is the identity, that is,

7 - B([M] + Im(a)) = y([Mw])
= [M] + Im(«).
Likewise, we have that 3 -~ is the identity. Let N be a finitely generated Ryy-

module and choose M finitely generated as an R-module such that My = N.
Then,

- (IN]) = B([M] + Im(av))

O

Example 23. Let R = C[[z,y, 2]]/(2® + ® + 2°). One can prove that R is a
2-dimensional UFD. Then Gq (R) = Z[R] ~ Z.

Proof. Notice that (z) C R is prime. Consider the multiplicatively closed system
W = {a" : n > 1}, and notice that Ry is a 1-dimensional regular local ring, so
that Go (Rw) ~ Z. By Localization Lemma we have an exact sequence

D Go(R/p) —>Go(R) 2>z —0

WNp#£0
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Notice that {p € SpecR : W Np # 0} = {(x,y,2)R, (z)R}. Set S := R/zR ~
Clly, 2]]/(y® + 2°) so that the exact sequence becomes

Go (C) & Go (S) —2= Gy (R) 2>Z —>0

By Corollary 24 we have Gy (S) = Z{[S], [C]}, since the only primes in S are
the zero and the maximal ideal. Consider the following short exact sequence:

0 R—>R S 0.

Then in the Grothendieck group Gy (R) we have [S] = 0. Also notice that
x,y € R form a regular sequence, therefore we get a long exact sequence

0 R R? R R/(z,y)R — 0.
So, inside Gg (R):
R [CEE o
ol = [ -0

But this just means that [C] is torsion in Go (R). However, y,z also form a
regular sequence in R, therefore

0 R R? R R/(y,z)R——0.

is also exact. This means
o) = | —2e=0

in Gy (R), and hence [C] = 0. Since [C] = [S] =0 in Gy (R), we have that « is
the zero map, and therefore

Theorem 29. Let R be a noetherian ring. Then the map

a:Go(R)

Go (R[2])

[M] ——— [M ®r Rl[z]]
s an tsomorphism.

Proof. Let M[z] denote M ®p R[z]. Since R[z] is free, in particular flat, the
map « is well-defined. We will define a map 8 : Go (R[z]) — Go (R) with the
following construction.

Let N be a finitely generated R[z]-module and consider the exact sequence

0 K N N C 0
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where K and C are the kernel and cokernel respectively. Notice in G (R[z])
that [K] = [C] and that

(z—1)K=(x—-1)C=0.

But R ~ R[z]/(x — 1) and so K, C are finitely generated R-modules as well.
Define

B(N]) = [C] = [K] € Go (R) -

This is a well-defined map. To see this, define ({N)) = [C] — [K] and consider
the following commutative diagram of R[z]-modules:

0 Ny N Ny 0
\Lx—l i/x—l \Lx—l
0 Ny N Ny 0

By the snake lemma, we have the long exact sequence

0 K K K, Ch C Cs 0

where K; and C; are the respective kernels and cokernels. Therefore we have
that

[C] = [K] = [C1] = [Kq] + [Ca] — K],
giving the desired result of
BUN)) = B({N1)) + B(N2).

Hence, [ is well-defined.
Observe that the composition So« is the identity. To see this, not that x —1
is a non-zero divisor on M |[z] and thus the sequence

M]z] M 0 (2.9)

To finish the proof, it is enough to show that « is onto. To do this, we use
Noetherian induction:
Assume not and choose and ideal [ in R maximal such that

Go (R/I) —2> Gy (R/I[z])

is not onto. We change notation by letting R/I = R.

Claim 1. The ring R is a domain.



1 Basic Lemmas and Remarks 41

To see this, suppose R is not a domain and let min(R) = {py,...,ps}. Note
that

min(R[x]) = {p1R[z],. .., psR[z]}.
We thus have the following commutative diagram:
@ Go (R/p:) Go (R) ——=0

D Go (B/pilz]) — Go (Rlz]) —0

By the corollary of the Filtration Lemma (page 32), the two horizontal maps
are onto. Further, we have that the far left map is onto by induction. This
forces a to be onto; a contradiction. Therefore, R is a domain.

Now consider the following sequence where W = R\ {0}:

® o(f)—@a () — @ (%) —om
peS’;;?:(R) QSpec(rle)

QOpRlz]

Y

The first map is onto by induction and the second is just a natural map and
hence is also onto. The third map is defined by the Localization Lemma on
page 36. As labeled above, let v be the composition map.

Let k£ be the quotient field of R. We now have the following commutative
diagram:

& co (?) ———> Gy (R) — Gy (k) —=0

SR N

0 K Go (R[z]) —= Gy (k[z]) —=0

where K is the respective kernel defined from the Localization Lemma. First
notice that ay is surjective since

Go (k) = Z = Go (k[z])

and «y is defined by mapping [k] to [k[z]]. Further, using the induction with
the Filtration Lemma, we see that v is onto the kernel K. Therefore, « is also
onto by the snake lemma. O

A helpful tool in the next theorem is the concept of the conductor.

Definition. Let R be a local domain and S be the integral closure of R. The
conductor, denoted €, is the largest common ideal of both R and S.
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Example 24. If R = k[t5, 10 ¢1°] then we have that S = k[t] is the integral
closure. It is not difficult to see that € = t3°R.

Theorem 30 (Conjecture of Herzog). If (R, m, k) is a one dimensional complete
local domain with algebraically closed residue field, then Go (R) ~ Z.

Proof. By the Filtration Lemma, Go (R) is generated by [R] and [k]. Further,
we have that the rank function Go (R) — Z is onto and sends [R] to 1. We need
to prove that [k] = 0.

If © € R is non-zero, then [R/xzR] = 0 and R/xR has a filtration of copies
of k of A\g(R/xR). Therefore

Ar(R/zR) - [k] =0

for any non-zero x in R. Let S = {A(R/xR) | 0 # x € m}. It is enough to show
that the ged of S is one.

Let V be the integral closure of R. Note that V' is a one-dimensional (Cohen-
Seidenberg), local (true sense R is complete; exercise) and V' is integrally closed.
Thus we have that V is a DVR with my = (¢).

As V is a finitely generated R-module, there exists a conductor € C R such
that €V C R. Pick any non-zero z in €. As tz is an element of €, we have that

M (V/2V)+1= Ay (V/tzV).
However, as the residue fields of R and V are the same,
M (V/2V) = Ag(V/2V)

=rank(V) - Ar(R/zR)

= )\R(R/IR).
Therefore we have that Ag(R/xR) = Agr(R/tzR) — 1. Thus we have that the
ged of S is one. O

1.1 Structure of One Dimensional Local Complete Do-
mains

Assume that R contains its residue field k and that k is algebraically closed.
Then R = k[t] since R is a DVR as above and R/my = k; k C R. Therefore,

by Cohen’s structure theorem, R = k[t]. Let
S = min{\(R/zR) | z € m}.
Then there exists an element
t5 Fagq st + € R

and an element u = 1 4+ as41t° + - - such that ¢t*u is the above element. Note
that t°*u € R, but « may not be in R.
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If the characteristic of k is zero, then by Hensel’s Lemma there exists v € R
such that v® = u. Let z = tv. Then k[t] = k[z]. Now z° € R and

R = k[2°, higher order powers] C k[z].

2 Class Groups

All along this section R will be an integrally closed noetherian domain.

Definition. Set X'(R) := {p € SpecR : htp = 1}. Also set X(R) = the free
abelian group on generators p € X1 (R). More explicitly, if D € X(R) we can

write
D= > mp,
pex!(R)

where all but finitely many among the n,’s are zero. Elements in X (R) are
called divisors.

Notice that, since R is integrally closed, for all p € X'(R) R, is a DVR (it is
a 1-dimensional integrally closed local domain). If pR,, = (t,), then every ideal
is a power of the maximal ideal, i.e. I = (;;) for some n € N. By definition

(ty) Ry N R =p™
is the n-th symbolic power of p, and it is the p-primary component of p”.

Example 25. Lel k be a field, with Chark # 2. Let

klz,y, 2]

=gy

R is an integrally closed domain: R is Cohen-Macaulay, and hence it satisfies
Serre’s condition (S2). Also the Jacobian ideal

J: (2x7yﬂz)

has height two, which means that R, is regular for all p € X!(R) and hence R
satisfies Serre’s condition (R;). Hence R is integrally closed.

Consider p = (z,2)R a prime ideal in R, and notice that p € X'(R). Then
pR, = xR,, since in R, y is invertible and hence z = —y 122, Then p? =

(22,22, 2%)R = (22,2, y2z) R and therefore
p@ = (22,22 y2)R, N R = (2)R, N R = (2) C p*.

since y is again invertible in Rj,.
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Given a non-zero ideal I C R, set

div(D= Y (D,

peEXT(R)

where

IR, = (t# ) Ry for p € X'(R),

Since I # (0) there are only finitely many minimal primes containing I, and
hence only finitely many height one primes containing I. For the others, if
p € X'(R) and I ¢ p, then IR, = Ry, and hence v,(I) = 0 for such p. So
div (I) is well defined, since we have just proved that the sum is finite.

Remark 24. Ifht I > 2, then vy (I) = 0 for all p € X*(R) and therefore div (I) =
0.

Definition. Given f = a/b € K~ {0}, where K is the fraction field of R, define
div (f) = div (a) — div (b).
Define the set of principal divisors
P(R) = {div(f) : f € K ~ {0}} € X(R).
It is a subgroup of X (R) since
div (fg) = div (f) +div(g) and div(f ') =—div(f).

Finally define the Class Group of R as

Cl(R) := X(R)/P(R).
The class of p € X(R) inside Cl(R) is denoted [p].

Definition. Two divisors Dy, Dy € X(R) are said to be linearly equivalent if
Dy — Dy € P(R) (ie. [D1] = [Ds]). A divisor D € X(R) is said to be effective

if
D= Z npp.

pex!(R)

and n, > 0 for all p € X(R).

Lemma 31. Let D € X(R). Then D is linearly equivalent to an effective
divisor.

Proof. Write D = DT — D™, where D" and D~ are effective. Write

k
=1
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for some p; € X!(R), n; > 0. Choose a non-zero = such that

zepi™n... mp,&"’“) # (0),

then E := Dt — D~ + div (z) is effective since vy, (z) > n; for all i =1,...,k
and clearly
D — E =div(x) € P(R).

O

Lemma 32. Let D € X(R) be an effective divisor. Then [D] = 0 if and only if
D = div (z) for some z € R.

Proof. It D = div (f) € P(R), then by definition [D] = 0. Conversely assume
D = div (a/b) = div (a) — div (b) for some a,b € R, b # 0. Write
D= > wlp= > wubp= > (@) =uvb)p

peEXT(R) PEXT(R) peX(R)

where v, (a) — v, (b) > 0 since D is effective. By uniqueness of the minimal part
of the primary decomposition we get

@= ] @< () @ =),

pEX(R) peEX(R)
and therefore a/b = x € R, so that D = div (a/b) = div (). O
Theorem 33. R is UFD if and only if C1(R) = 0.

Proof. R is UFD if and only if every height one prime is principal, if and only
if p = div (z) for some z € R. By the previous Lemma this is true if and only
if [p] =0 for all p € X(R), if and only if C1(R) = 0. O

Theorem 34 (Localization Lemma). Let W C R be a multiplicatively closed
set. Then there exists a short exact sequence

0 H Cl(R) Cl(Ry) — 0,

where is the subgroup H =< [p] : p € X1 (R),pNW # () >C CI(R).

Proof. First we define the map 6 : X(R) —s X (Ry) as follows:

~ o Jpif W #(0)
e(p){pw if pNW =0

Notice that such a map is well defined since X(R) is free and we can always
define a map on a basis. Notice also that py, are height one primes in Ry .

Claim. 6(P(R)) C P(Rw).
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Proof of the Claim. By Lemma 31 it is enough to show it for effective divisors.

Let a € R, then
div (a) = Z vp(a)p + Z vg(a)g.
pPOW #0D qnWw =0

Then B a
B(div(a) = 3 vela)aw = div (I)

qnW=0
This is because

ﬂ p”w(a)ﬂ m qu(a)

pNW #£0D qNW =0

B 00

qNW=0

and localizing

O

Also, 0 is surjective by the correspondence between primes in R and primes
in Ry that don’t intersect W. Therefore 6 induces a surjective map

Cl1(R) — Cl(Rw) 2—o0.

Clearly H C ker 8. Conversely, let D € ker 8, we can assume that D is effective,

so that
D= Y dlpl+ > dyld

PAW #D qnW=0
with dy,dq > 0, and >_ g dplp] € H C ker§. Also

O D dilal| = D dylau]=0

qNW =0 qNW=0
inside Cl (Ry ). This means that there exists 2 € Ry such that
div (a/w) Z dg[quw)-
qNW =0
Since w is a unit in Ry we have div (a/w) = div (a/1), so we can assume
div (a/1) Z dq[quw)-
qNW=0

Taking a primary decomposition of (a), we have that the part with {p : pNnW =
(0} has to be the same as for D, so that

div(a) = D epp+ D dgld]
pPOAW #£0 qNW =0

Clearly D 2 div (a) (mod H), so that [D] 20 (mod H) in Cl(R) and therefore
[D] € H. O
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Example 26. Let k be a field with Chark # 2. Let

klx,y, 2]

RCEE

and consider the multiplicatively closed set W = {z"}. Then
_ klz,y,z, 27 ']

_ klx,y,z,2~
1 ~ IR R
L R P e R Py

~ klz, 2,27,

which is a UFD, and hence C1(R);, = 0. Using Localization Lemma for Class
Groups we have that

Cl(R) =< [p]:pNn{z"} #0,p € X' (R) >.

Notice that vzR = (x,z) =: p and htp = 1, so that it is the only height one
prime intersecting W. Hence Cl(R) ~ Z[p]. We have already noticed that

P =(2)

hence div (z) = 2p, which means 2[p] = 0 in Cl(R). We have two cases:

7.)27.

Cl(R) ~ {0

But R is not a UFD because p is height one but not principal, therefore Cl (R) #

0, that is
Z

Tz

Theorem 35. Let R be an integrally closed noetherian domain. Then

CL(R)

(1) R[T,...,Ty,] is an integrally closed noetherian domain.
(2) C1(R) ~ Cl(R[T},-..,Ty]).

Proof. We prove only (2). By induction is enough to show the case n = 1.
Recall that if p € X(R), then p[T] = p ®p R[T] € X (R[T]). Also, ifa € R
and

(@) =p" 0 npl™

is a primary decomposition, then
aR[T) = p[T]™) N ... opg [T) 7). (2.10)

Let W = R~ {0}, then (R[T])w = Rw[T] = K|[T], where K = Q(R) is the
quotient field of R. This is UFD since it is a PID, hence C1(() R[T])w) = 0.
Using Localization Lemma for Class Groups we have

CI(R[T) ~H=<[Q]:QNW #0,Q € X*(R[T]) > .
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Note that, since @ N R # (0), then ¢ = @ N R is a height one prime in R.
Therefore Q D q[T]. But ht Q = 1, hence @ = q[T]. Hence

X(R) H 0
q > [q[T7]

By (2.10) the kernel is exactly P(R), hence H ~ Cl(R). This is because prin-
cipal divisors in R correspond to principal divisors in R[T]. O

Remark 25. In general it is not true that Cl1(R) ~ C1(R[T7]). If this is the case
R is said to have discrete divisor class group. Notice that we have always

Cl(R) = CL(R[T])

Theorem 36 (Danilov). If R satisfies Serre’s conditions (S3) and (Rz) then
Cl(R) ~ CL(R[T]).

Remark 26. Similarly we always have Cl(R) — Cl (E)
Theorem 37 (Flenner). Let R be an integrally closed standard graded domain,
say R = k[Ri] = ;5 Ri where k is a field. Set m = P, R; and assume R

satisfies Serre’s condition (Rg). Then

Cl(R) ~ Cl(Rm) ~ Cl (ﬁm) .

Clz,y, 2]
R = (22 + 13 + 27) :
Y (2,9,2)

Then R is UFD, therefore C1(R) = 0, but C1(R[T]) # 0 and CI (ﬁ:) £ 0.

Example 27. Let

There is a relation between the Class Group and the Grothendieck Group.
First we need the following definition.

Definition. Let R be a noetherian domain. The reduced Grothendieck Group
Go (R) is the subgroup of G (R) which is the kernel of the map

Go (R) — Go (K),

where K = Q(R) is the fraction field of R. Notice that, by Localization Lemma,
Go (R) is generated by [R/p], where p # 0 is prime.

Theorem 38. Let R be a integrally closed noetherian domain. Let H be the
subgroup of Go (R) generated by [R/p], with htp = 2. Then there is a short
exact sequence

0 H Go (R) Cl(R) — 0.

The proof of the theorem is postponed.
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3 Divisors attached to Modules

Throughout this section let R be an integrally closed noetherian domain. The
goal is to construct a map

¢:Go(R)——=Cl(R)
[M] ———c([M])
We will start the construction restricting to torsion modules.

Definition. Let R be a domain. An R-module T is said to be torsion if there
exists € R, x # 0 such that 2T = 0.

Let T be a torsion R-module. Define

o)=Y ATk € CLR).

peX!(R)

Since T is torsion we have ht annT > 1. Also, since SuppT = V(annT), there
exist only finitely many p € X*(R) such that inSuppT’, namely

SuppT N X'(R) = X*(R) N Min(annT).

For each of these we get A\(T},) < oo since /(annT), = pR,, which means that
SuppTy, = pR,, is just the maximal ideal, hence T} has finite length.

Remark 27. If we have a short exact sequence of torsion modules

0 T T T 0,

then ¢(T) = ¢(T1) + ¢(T3) since localization is flat and length is additive.

Let us now go back to the general case. Let M € Modfg(R)7 and recall that
rank(M) = dimxg M ®@p K, where K = R is the fraction field of R.

Remark 28. T is torsion of and only if rank(7T") = 0.

Suppose rank(M) = r, then there is a K-vector space isomorphism
a:R"pr K — M Qg K.
Since R" is finitely presented, we have
Homp,, (R{o), M(0)) = (Homg(R", M)) ) ,

which means that there exists a : R" — M such that () = a. We have an
exact sequence

0 ker o R" M cokerat —= 0,

and also ker, and cokera are torsion modules because o gy = a, which is an
isomorphism. Hence kera ® 1 = 0 = cokera ® 1. But keraa C R", and a



50 Grothendieck Groups

submodule of a free module cannot be torsion unless it is zero. Therefore we
have the following short exact sequence

0 F M T 0,

where F' is free and T := cokera is torsion. Define ¢(M) := ¢(T).

Claim. c is well defined.
Proof of the Claim. Suppose we have

0 F M T 0

and
0 G M T 0.

We need to prove that ¢(T') = ¢(7”). First of all we can reduce to the case
F C G. In fact, notice that

F®RK2G®RK§M®RK’ZKT

We can think of F' and G inside K" (they are not K-vector subspaces). Then
there exists x € R such that 2 F C G. However, consider

0 0 ker 0
0 zF M T" 0
\
zl idyg ol
\
0 F M T 0
! |
- 0 coker6

By the Snake Lemma we get ker ~ F/xF, and hence we have a short exact
sequence

0 o T T 0

These are all torsion modules, and we have already proved that for torsion
modules ¢ is additive. Hence

c(T") = c(T) + c(F/zF) = ¢(T) + rc(R/xR).

c(%) - 3 <<£)p> Ip] = [div ()] = 0 in CI(R).

peEX(R)
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Therefore ¢(T") = ¢(T'), and hence without loss of generality we can assume
F CG.

Now consider

0 0 0 ker 0 0
Vo i

0 F M T 0
z\L idm i 5“(

0 G M T 0
S

0 % 0 cokerd 0

so that, again by Snake Lemma, we get a short exact sequence

0

I}
N

T’ 0,

and therefore
e(T) = c(T") + ¢(G/F).

We want to prove that ¢(G/F) = 0. We have

OHFERT*A>G2RT*>f*>O,

and we need to prove that there exists y € R such that

pE;(R)A ((?)p) p = div (y).

Take y = det A. Let p € X*(R), then localizing we get

Gy
P P Fp

Since p is a height one prime, R, is a DVR, and in particular a PID. Then
we can use the fundamental theorem for PID, for which we can diagonalize A,
changing basis. So assume
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is diagonal, with d; # 0 for all ¢ since A, is an injection. Then

7~ (), (@), == (@),

(%)= ((),)

and therefore

R
(di)

so that

c <1€) = [div (deta)] =0 in CL(R).

O

We want to prove now that ¢ induces a map on Gy (R). Suppose we have a
short exact sequence

0 M, —%s M —Ls 0,

we want to show that c¢(M) = C(M;) + ¢(Mz). Suppose rank(M;) = r; and
rank(Ms3) = 79 and choose free modules R™ C M; and R™ C M, with bases
€1,...,ep and fi,..., fr, respectively. Set

u;=ale;) €M fori=1,...,r1 andv; =B (f;) €M forj=1,...,79.
Claim. R{uy,...,Up ,V1,...,0r,} 18 a free R-module of rank 1 + 7.

Proof of the Claim. Assume not, so that there exist s1,...,8r,,t1,...,t, € R
not all zero such that

siur + ...+ S Uy, v + .o+ v, = 0.

Apply B, using the fact that 5(u;) = B(a(e;)) =0foralli=1,...,r:

0= thﬁ(vj) = thfj»
=1 =1

which implies t; = ... = t,, = 0 since {f1,..., fr, is a basis of R™. Then we
have

T1 T1

Zsiui = Za(ei) =0,

i=1 i=1
which implies u; = ... = u,, = 0 since {ey,..., e, } is a basis of R™ and « is

injective. This proves the Claim. O
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Finally we have an exact diagram

O*>RZ;1 HerirzﬂRr\z —0

0 M, M M, 0
0 T T T 0
0 0 0

which commutes by construction. The short exact sequence

0 T T T, 0

exists by Snake Lemma, and 77,7 and 75 are all torsion modules, again by
construction. But for torsion modules we know that c is additive, hence

(M) =¢(T) =c(Th) + c(Tz) = c(M7) + c(Ms).
Summarizing we have the following theorem.

Theorem 39. There is a surjective group homomorphism
¢:Go(R) —= CI(R) —=0
Proof. We already proved that there is a map
¢: H(R) —=CI(R)

that preserves short exact sequences, i.e. ¢(L(R)) = 0. This induces a group
homomorphism

c¢: Gy (R)——=Cl(R).

To prove that it is surjective let [p] € Cl(R) and consider R/p, which is a torsion
R-module. Then

()= 2, G, )a=w

Finally we can consider the restriction
¢: Gy (R) —= CI(R),

which is still surjective since for all p € X!(R) we have [R/p] € G (R). O
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Proposition 40. Let ¢ : Gy (R) — CI(R) be as above. Then
kerc=H =< [R/p] : htp > 2 >,

so that we have a short exact sequence

0 H Go (R) Cl1(R) —= 0.

Proof. First notice that H C ker ¢ since if [R/p] € H, then R/p is torsion and
hence
c(R/E) = > A((R/p))la] =0
qeEX(R)

since, being htp > 2, p cannot be contained in any height one prime. To prove
the converse we want to find a left inverse to c¢. First let use define a map on
the free abelian group X (R) as follows:

B:X(R)—=Go(R) /H
p——""I[R/p|+ H
Notice that 3 is onto since by the localization lemma we have
Go(R) =<[R/q] :htq>1>

and H already involves all primes of height at least two, while 5(X (R)) involves
all primes of height one. We now want to show that P(R) C ker 5. Let a € R,
a # 0, and write
(@= [ o™,
peX!(R)
so that

div(a) = Y nylpl € X(R).

pEXT(R)

Applying 8 we get

Bdiv(a) = > mnp[R/p]+H € Go(R).
peX(R)

Consider the following short exact sequence

R R
0——> o P o) T 0, (2.11)
peEX(R)

where T is the cokernel of the first map. Also, notice that we have the following
short exact sequence of R-modules

0 R—=R R/(a) 0,
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so that [R/(a)] = 0 in Gy (R). Therefore
R R
D =|=|+m=1mI
pexi(m) P {(a)}
Claim. ht(annT) > 2.

Proof of the Claim. Let q € X' (R). If a € g, localizing the short exact sequence
(2.11) at q we get

R R R R
0 ((a‘)) - q("q) @ p(”p) B q("q) Tq 0,
q PEX(R) q

so that Tq = 0. Also, if a ¢ g, then both (R/(a)), and (@pexl(m R/p("*ﬂ))CI

are zero, so that T; = 0 again. This proves the Claim. O

By the Claim we have that

b i =[T] € H.

(np)
pPEX1(R) P
Finally, one can prove that
R R
D |- T mly|en
pEX(R) pPEX(R)
so that P(R) C ker 3, and hence we get an induced map
B+ Cl(R) — Gy (R) /H.

To finish the proof we need to show that 8 is a left inverse for ¢, and it is enough
to check it on the generators of Go (R)/H, i.e. [R/p] + H with p € X'(R).

T (@)t
() [

that is foc = idcTO(R)/H’ and c is injective. This implies kerc = H. O

so that

Corollary 41. Let R be a integrally closed noetherian domain such that every
p € XY(R) has finite free resolution. Then R is a UFD.
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Proof. It is enough to show that Cl1(R) = 0. Let [p] € Cl1(R), then by assump-
tion there is a finite free resolution

0——=F, F F, % 0

with the F}’s finitely generated free R-modules. In Gy (R) we get

and applying ¢ we get

([F]) -~ i(—l)icam) 0

since ¢ is zero on free modules. Therefore Cl (R) =0 and R is a UFD. O
We now state, without proving it, Eagon’s Theorem.

Theorem 42 (Eagon). Let R be a noetherian ring and let F be the free abelian
group on {(Rp) : p € SpecR}. Let W C F be the submodule generated by all

> np(R/p),

peEA

where for q € SpecR and x ¢ q there exists a prime filtration of R/(q,x) that
has exactly n, copies of R/p, for p € A. Then

Remark 29. For q € specR and = ¢ q we always have a short exact sequence

0 E“"E R

q q (9,2)

therefore [R/(q,z)] = 0 in Gy (R) and we always have a subjective map

F/W = Go (R) = 0.

4 Construction and Properties of K (R)

Definition. An R-module P is said to be projective if there exist an R-module
@ and a free R-module F' such that

PoQ~F.

Remark 30. By symmetry, the module @) in the above definition is also projec-
tive.
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Remark 31. Free R-modules are projective.

Remark 32. If (R, m) is a local noetherian ring, then every projective R-module
P is free. With the assumption that P is finitely generated this is an easy exer-
cise, using Nakayama’s Lemma. The result for non-finitely generated modules
was proved by Kaplansky.

Remark 33. If R is a noetherian ring and P is Projective, then for all ¢ € SpecR
P, is a free Rq-module. This is because localization commutes with direct sums,
and because projective modules over a local ring are free by Remark 31. If P is
finitely generated, then the converse holds, i.e. if Py is free for all ¢ € SpecR,
then P is projective.

Remark 34. Let W C R be a multiplicatively closed set. Because localization
commutes with direct sums we have that if P is a projective R-module, then
Py is a projective Ryy-module.

Remark 35. Let P be a R-module. Then P is projective if and only if whenever
we have a short exact sequence

0 K M P 0
then it splits, ie. M ~ P@ K.
Definition. Let R be a noetherian ring. In analogy with Gy (R) we define

Ko (R) = Z{finitely generated projective R-modules}
A Z{<P®Q>—-<P>-<Q>}

since by Remark 35 every short exact sequence of Projective modules splits.

Remark 36. The case in which (R,m) is local is not interesting since every
Projective module is free by Remark 31.

Remark 37. Clearly there is a map

so that we can apply the same results concerning the existence of functions
rank,e, A : Ko (R) —=Z

as we did for Gy (R).

Theorem 43. Let R be a noetherian ring and let P,Q be finitely generated
projective R-modules. Then [P] = [Q] in Ko (R) if and only if there ezists a
finitely generated free R-module F' such that

POF~QaF
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Proof. Clearly if P® F ~ Q & F for some finitely generated free R-module F',
then [P] = [Q] in Ko (R). Conversely assume [P] = [Q]. Then there exist short
exact sequences

0 — P —PFoQ;—Q;—0
such that
(P)—(Q) =Y ail(P;® Qi) — (P) = (Qi) — Y b;((P & Q;) — (P)) — (Q)),
a; >0 b;>0

where we rearrange the sum in order to have positive coeflicients. then we can
rewrite

(P)y+D ai(P@Qi)+ Y b((P)+@Q;) = (Q)+ > ai((P)+(Qi)+ D b (PeQ;)

a; >0 b]‘>0 a; >0 bj>0
and therefore

Po[QroP e (o) ~Qo|(RoQ)™oP’ o],

Hence P& F ~ Q& L with L = Q)" & P/ & P;Jj & Q?j a projective R-module.
Since L is projective there exist a R-module N and a free module F' such that
L® N ~ F. Therefore

POF~POLOENQALON=QDF,
which completes the proof. O

Definition. Let Q be a noetherian R-module. Suppose there exist free R-
modules F and G such that Q ® G ~ F, then @ is said to be stably free. Clearly
projective modules are stably free.

Corollary 44. Let R be a noetherian domain. If Ko (R) ~ Z, then all finitely
generated projective R-modules are stably free.

Proof. Use the rank function

rank : Ko (R) —=Z

R 1

Since by assumption Ky (R) ~ Z and since rank is surjective, it must be also
injective and hence an isomorphism. Let @ be a finitely generated projective
R-module, say rank(Q) = r, then

rank([Q]) = r = rank([R"]),

and hence [Q] = [R"] since the function rank is an isomorphism. By Theorem
43 there exists a free R-module G such that

QPG ~R &G ~F afree module.
Therefore @ is stably free. O
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Lemma 45 (Schanuel’s Lemma). Let R be a ring, and let

0 N P %M 0

0—>Ny,—2op, "o oo

be short exact sequences of R-modules, with Py and Py projective. Then Ni @
P2 ~ N2 D Pl-

Proof. Since P; is projective there exists a map 7 : P» — P; such that 7 = a.
By diagram chasing we can also get a map g : Ny — N, so that the following
diagram commutes:

0 NP 2> M 0
g s
J B
0 N, P M 0

Then the following is exact:

0*>N1 ﬂNQ@PlﬂPQHO
If so the sequence splits as P, is projective, and hence the lemma follows. So we
just have to prove that the above sequence is exact. Clearly (g,4) is injective,
because j is injective. Also (j, —m) is subjective: let z € Py, since « is surjective
there exists y € Py such that a(y) = 8(z). But 8(n(y) — 2) = a(y) — B(z) =0,
therefore there exists v € Ny with j(u) = 7(y) — z. Finally z = n(y) — j(u) =
(j,m)(—u, —y). Now clearly Im(g,i) C ker(j, —m) because moi = jog. Let
u € Ny, y € Py such that j(u) = 7(y). Then a(y) = 0 because f(7) = 0, and
hence y = i(v) for some v € Ny. But j(g(v)) = w(i(v))w(y) = j(u), and since j
is injective we have u = g(v). Hence (u,y) = (g,7)(v). O

Lemma 46 (Generalized Schanuel’s Lemma). Let R be a ring and suppose we
have long exact sequences

0 N1 Pn Pn_lﬂ ...... Po Ml 0

0 N2 Qn anl —_— ... Qo Mg 0

where My ~ My and all P;’s and Q;’s are projective R-modules. Then

NiOQrnd®P1®...“No®P, ®Qn1®...
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Proof. Start with

0 Lo Qo M, 0

to get, by Schanuel’s Lemma, that Py ® Ly ~ Q¢ & Ky. Now use induction on

0 N1 Pn Pn—l ...... P2 Pl@Q()HKo@QOHO
0 Ny Qn Qn—l ...... QQ Ql P ——Lo®Fh——0
to get the result, again by Schanuel’s Lemma. O

Theorem 47. Let R be a regular ring, dim R = d. Then
Go (R) ~ Ko (R).
Proof. There exists an obvious map
i: Ko (R)—Go(R)
P ——[P]

Let M € Modfg(R), and look at its projective resolution

0 K Py Pio——s...... P PoM 0.

If q € SpecR, then localizing we get the exact sequence

0—Kq—— (Pa—1)qg—— ... (P1)qg — (Py)q My —0.
But globdim(R4) < d, therefore there exists a free Rq-resolution
00— (Fg)g — (Fg—1)qg—> ... — (F1)q — (Fo)qMy —0.
By Generalized Schanuel’s Lemma we get
K4 @ (projective) >~ (Fy)q @ (projective),

and hence K is projective (and hence free) for all ¢ € SpecR. Since K is a
finitely generated locally free R-module it follows that it is projective. Using
the above notation (set Py := K) define a map

j:H(R) ——— Ko (R)

(M) ——=[Py] — [P1] + ...+ (—=1)4[Py].
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Notice that ; is well defined since if we have another projective resolution

0—=Qa—>Qq-1—>...... — Q1 ——> QoM —0,

then by Generalized Schanuel’s Lemma we have Qeven @ Podd =~ Peven @ Qodd,
that is

[Po] = [P] + ...+ (—1)[Pg] = [Qo] — [@1] + ... + (—1)%[Qd]

in Ko (R). Now let 0 - M; — M — My — 0 be a short exact sequence of
R-modules and consider projective resolutions

P —— M ——0

Q. —— M, ——=0

Then there exists a projective resolution P. & Q. — M — 0 of M, so that

](<M>) = [Peven 2] Qeven] - [Podd @ Qodd] =

= [Peven] = [Poad] + [Qeven] — [Qoaa] = J((M1)) +j((Mz)).
Therefore j induces a homomorphism j : Go (R) — K (R).
Claim. in = idG'o(R) and j 04 = idKo(R)~

Proof of the Claim. Let P be a finitely generated projective R-module, then
i([P]) = [P] € Ko (R). We have shown that the definition of j does not depend
on the chosen resolution of P, so in particular we can consider

0—=FPp=P——P—>0,

and hence j([P]) = [Py] = [P]. Let now M € Mod™(R), and consider a projec-
tive resolution

0 Py Py 4 Py o——s. . .... P PoM
Then j([M]) = [Peven] — [Poad] € Ko (R), so that
Z]([M]) = [Peven} - [Podd] = [M] € Go (R)

O

Corollary 48. Let k be a field and let R be the polynomial ring klxy, ..., Ty,].
Then every finitely generated projective R-module is stably free.

Proof. We know that R is regular, therefore by Theorem 47 we have
Ky (R) ~ Gy (R) ~ Gy (k) ~ Z.

Since Ky (R) ~ Z, by Corollary 44, we have that every finitely generated pro-
jective R-module is stably free. O
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5 Construction and Properties of K; (R)

Let R be a commutative ring with 1r. Let us define two categories:

e Objects: Pairs (P, f) [respectively (F, f)], where P is a finitely generated
projective R-module and f : P — P is an isomorphism [respectively F is
a finitely generated free R-module and f : F' — F is an isomorphism].

e Morphisms: Let us define morphisms just for the first category, for the
second the definition is analogous. A morphism h : (P, f) — (Q,g) con-
sists of an R-module homomorphism A : P — @ such that the following

diagram commutes:
P P
Q Q

In particular, if A is invertible this means that ¢ = hfh™'. A sequence

f

-

_—
g

00— (P1, f1) == (P, fo) == (P3, f5) —= 0 (#)
is exact if and only if the following sequence of R-modules is exact
0—=P P 2op 50
i.e. P, ~ P, & Pj5 since they are projective.

Definition. We define

free abelian group on (P, ) up to isomorphism
Ky (R) = group (Hf) p phism.

where H is the subgroup generated by the following relations:

(1) Given a short exact sequence as in (#), then we introduce a relation
(P2, f2) = (P1, f1) — (B, f3)-
(2) If (P, f) and (P, g) are objects, then we introduce the relation
(P, fg) — (P.f) = (P,g).
By [P, f] or [(P, f)] we mean the image of (P, f) in K; (R). Also, we let KI (R)

be the same construction, but in the second category of finitely generated free
modules.

Remark 38. We will prove that K; (R) ~ K{ (R).
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Remark 39. For any finitely generated projective module P we have [P, 1p| = 0.
In fact [P,1p] = [P,1p o 1p| = [P,1p] + [P, 1p], and hence the remark follows.

Proposition 49. Let L be a field. Then
K (L)~ L"=L~{0}.

Proof. O
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6 Exercises
(1) What is the kernel of a?

(2) Is the following exact?

Go (R/()) — Go (R) — Go (Rz) —>0

(3) Show that sequence (2.9) on page 40 is exact.
(4) So that Go () Rz, y]/ (22 + y?) is Z ® Z/2Z.



Chapter 3

The Module of Differentials

Throughout this chapter, k, R, S will be commutative rings, and k — R — S
will denote ring homomorphisms, so that R and S are k-algebras and S is a
R-algebra.

Definition. Let £ — R be a k-algebra, and let M be a R-module. A k-derivation
D : R — M is a map such that

(1) D(r+s) = D(r)+ D(s) for all r, s € R.
(2) D(ar)=aD(r) for all r € R and for all « € k.
(3) D(rs) =rD(s) + sD(r) for all r,s € R.
We will denote the set of all k-derivations on M by Dery (R, M).

Remark 40. The definition of derivation makes sense even if the ring is not
commutative, but in that case we have to respect the order of the multiplication.
For instance in (3) we have to require D(rs) = rD(s)+D(r)s instead of D(rs) =
rD(s) + sD(r).

Remark 41. D(«) =0 for all « € k.
Proof. Notice that
D(1)=D(1-1)=1-D(1)+1-D(1),

and hence D(1) = 0. It follows that

for all o € k. O

Remark 42. The set [ := D71(0) = {r € R: D(r) = 0} is a subring of R, and
also D is a [-linear map. In fact [ is the biggest subring S C R such that D is
S-linear.
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Proof. If r;s € 1, then D(r +s) = D(r) + D(s) = 0. Also D(rs) = rD(s) +
sD(r) =0and D(1) = 0, so that [ C R is a subring. Notice that by the previous
remark we have that k C[. If 3 €l and r € R, then

D(Br) = BD(r) +rD(8) = BD(r),
so that D is automatically a [-derivation. O
Remark 43. Let D be a k-derivation and let r € R. Then for n > 1 we have
D(r™) = nr" "t D(r).

Proof. Clearly the claim holds when n = 1. By induction assume it’s true for
n > 1. Then

D" = rD(r™) + r"D(r) = rnr™ D(r) + 7" D(r) = (n + 1)r"D(r).
O

Remark 44. If Char(R) = p > 0, then for all k-derivations we have D(rP) = 0.

Remark 45. If D : R — M is a k-derivation and f : M — N is a R-
homomorphism, then f o D is a k-derivation.

We want now to construct a R-module g/, and a universal derivation
d: R — Qg such that for any other k-derivation D : R — M there exists a
unique R-module homomorphism

Qpr/k

Definition. Qg is called the universal module of differentials (or universal
module of derivations). It is also called Kahler module of differentials.

1 First construction of the Module of Differen-
tials

We present now a first way to contstruct (g, d). We will see a second con-
struction, easier to deal with, later in this chapter. Take a free module on

symbols {dr : r € R}, i.e.
F := (P Rdr.
reR

We want to construct a derivation, therefore let us define H C F to be the
submodule generated by:

e d(r+s)—dr—ds.
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e d(rs) —rds — sdr.
e d(ar) — adr.

where 1, s € R, o € k. Then set
QR/k :F/H dR%QR/k
r———>dr

Notice that d is clearly a derivation. Let now D : R — M be a k-derivation, i.e.
an element of Dery (R, M). Consider the following diagram

r————>dr

r R—d>QR/k

\ y
Ve
D L0t

M
D(r)

Notice that f(dr) = D(r) is forced to make the diagram commute, and also
{dr : v € R} generates Qp/;,. Hence if such f : Qg — M exists it has to
be unique. Notice also that on F' we can define freely f on the basis elements
dr. Also f(H) = 0 because D is a derivation, therefore f : F — M induces
amap f : Qrsy — M. Finally (g, d) is unique (up to isomorphism) by
usual universal property arguments. If we consider d’' : R — €', then we have a
commutative diagram

and one can verify that fog=ide and go f =idg,,.

Remark 46. By uniqueness and by Remark 45 we have
Dery (R, M) ~ Hompg(Qg/, M).

Proposition 50. Let k be a ring and let R = k[x)]aca be a polynomial ring.
Then

Qpyr = EP Rz
AEA
a free R-module. Also, for f € R, we define
0
df = Z afjd%\ € Qr/k,

where the sum involves only finitely many i’s.
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Proof. Let F' = @, Rdxy. Consider the diagram

Elxa] -4 . F dxy

D(xy)

where the choice dxy — D(xy) is forces by the commutativity of the diagram.
F is free, hence the map is well defined. The key point of this proof is that
d: k[zy] — F is in fact a derivation. For f, g € k[z,] and o € k we have:

o d(f+9) =Y, Y Ddu; =5, 2dw; + 3, 2 dw; = df + dg.
d(fg) =Y, Wdw; = 1Y, Podu; + g Y, L du; = fdg + gdf.

o dlaf) = Zz aq« d:clfazzax dz; = adf.

Proposition 51. Let R be a k-algebra and let I C R be an ideal. Then

~ e
(B/D/F=R(di:iel)

with d(r + 1) = dr + R{di : i € I).

Proof. We will prove that (Q(g/p /k,a) satisfies the universal property. Let
D : R/I — M be a k-derivation. Then

d

Qr/k
/
/

/
, feHomg(Qr,/w,M)

Notice that f(di) = D(i) = 0 for all i € I, therefore we get a unique induced
map d, which is clearly a derivation:

N e

d_ Q
R/T - -~ R(d?fé])

NS

M

R Qpr/k
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Example 28. Let R = k[z]/(f). Find Qg/,. By the previous proposition we
have

O o SWlal/k
M Rlaltdi i e ()

Notice that if i € (f), then i = fg, and hence
di = fdg + gdf = fdg + gf'dz,
therefore R(di : i € (f)) C fk[z]dz + f'k[z]dz. Conversely
flde =df € R{di i€ (f)),
and also d(zf) = zdf + fdx, so that
fdz = d(xf) — zdf € R(di :i € (f)).
Hence R(di : i € (f)) = fk[z]dz + f'k[z]dz. This means

klx]dx klx] R

~ ~

R e+ PRlds () ()

Definition. Let R — S be a map of algebras, and assume that S is finitely
generated as an R-algebra. For every R-algebra T and for every ideal J C T
such that J2 = 0 define the natural map

07 7 : Hom®2(S, T) — Hom%&(S, T/.J),
where Hom%gC, -) denotes the module of R-algebra homomorphisms. Then
(A) S is said to be smooth over R if 07 ; is surjective for all T', J as above.

(B) S is said to be unramified over R if 7 ; is injective for all T', J as above.

(C) S is said to be étale over R if it is both smooth and unramified, i.e. if 67 ;
is an isomorphism for all T, J as above.

We will prove the following theorem:
Theorem 52. Let R — S be as in the above definition. Then

(A’) S is smooth over R if and only if S is flat over R and Qg/g is a projective
S-module.

(B’) S is unramified over R if and only if Qg/p = 0.

(C°) S is étale over R if and only if S is flat over R and Qg/pr = 0.
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2 Second construction of the Module of Differ-
entials

Let k£ be a ring, and let R be a k-algebra. Map

RorR—"—=R
Ziri®8i|—>ziri3i

and let .# := ker u. We will prove that the following is an isomorphism.

~

)52

Qpr/k
(rol-1@r)+ 2 ——dr

Remark 47. R ®j, R has both left and right module structures, in fact we can
consider

T(Z 8 ®t;) = Z(rsi) ®t; and (Z 8 @ ty)r = Zsl ® (rt;).

Remark 48. With respect to either left or right R-module structure we have
J=Rr®l—1@r:recR)

Proof. We just prove the case with the left module structure. The other case
is similar. Clearly R(r®@1—1®r:r € R) C .#. Let ) . r; ® s; € .7, so that
>, misi = 0. Consider

—ZTi(Si ®1— 1®Si) = Z(—Tisi)®1+2ri®si.
7 %

7

Hence Zl r; ® s; € £ and hence the remark follows. O
Remark 49. The two R-module structures on .# /.2 are the same.

Proof. Tt is enough to show it on the generators. Let r,s € R, then
s(rol—19r)—(rol—19r)s = rs@l—s@r—res+1ers = (rol—19r)(sel—1s) € 2,
thatis s(r®1—-107r)=r®1—-1®r)sin /.72 O

Remark 50. The map
d:R—— 7/ 9%

r—rl—-1Qr

is a k-derivation.
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Proof. Let r,s € R, then
dir+s)=(r+s)@1-1®(r+s) =(r®1l-127)+(s®1-1®s) = d(r) +d(s).
Also

drs) =(rs)@1—-1®(rs) =s(rel—10r)+(s@1—-1®s)r.

Since in .#/.#2 left and right action are the same we get (s ® 1 — 1 ® s)r =
r(s®1—1®s), and therefore

d(rs) =rd(s) + sd(r).
Finally, if « € k and r € R, we get
dlar)=(ar)®1 -1 (ar) =a(r®1—-1®r) = ad(r).
O

Before proving that (.#/.#2, d) is in fact the module of differentials we want
to introduce the notion of idealization. Let R be a ring and let M be a R-module.
Define

S:=RxM:={(r,m):r€ Rme M},

adding componentwise and multiplying using the following law
(rym) - (s,n) = (rs,rn + sm).

Another way to see this multiplication is ”using distributive property with M? =
0”:

13

(rym)-(s,n) =" (r+m)-(s+n) = rs+rnt+sm+mn = rs+rn+sm “ =" (rs,rnt+sm).

With this choices R x M is a commutative ring with identity (1,0). Another
way to see this is

RKM:{[S T] :rER,mEM}

with the usual ring operations.

Remark 51. If R is a Cohen-Macaulay ring and wg, is its canonical module, then
S = R X wg is Gorenstein. Notice also that S/wr ~ R, and w% =01in S, hence
up to radical every Cohen-Macaulay module is Gorenstein.

Question. Let R be a domain and let M be a torsion free R-module. When

does there exists an idealization S = R D.< M such that S is also a domain?

We are now ready to prove the theorem.
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Theorem 53. With the above notation we have
I I = Qr/k
rel—-—1Qr<—dr
Proof. We want to show that (.#/.#2, d) satisfies the universal property, i.e. if

D € Dery (R, M) for some M R-module, then there exists f : .#/.#2? — M such
that

R i . )92
Ve
D i»/f
M

As usual, since .# /.92 = R(r ® 1 — 1 ® ), if f exists it is forced to be unique,
since

frel—-1®r)= f(dr) = D(r).
Let S = R x M. There exists a k-algebra homomorphism

R® R b S
r®st—>(rs,sD(r)) = (r,D(r)) - (s,0)

and this follows from the fact that the map

R®, R h S

(rys) ——=(rs,sD(r)) = (r,D(r)) - (s,0)
is k-bilinear, and from the universal properties for tensor products. Notice that
h(rel—-1®r)=h(r®l)—h(1®r)=(r,D(r))— (r,0) = (0,D(r)),
hence there exists a map
f: I —M
r@l—1®r+—— D(r)
Also f(/ 2) = 0 since f is a map of rings and hence
(7)) = J(#) - f(#) S M* =0,

Therefore f induces the desired map f : . /.2 — M that makes the above
diagram commute. O
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3 The Jacobi-Zariski Sequence

Remark 52. Consider k¥ — R 5 S. Then there exists a natural S-module
homomorphism

SQrQr/ — Qg
Proof. There exists a R-linear map
Qr/r —= Qs
dr —— dp(r)
This gives a R-bilinear map
S X Qe —= Qs
and hence we get a S-linear homomorphism
S®r Qr/k —= Qs

O

Question. When is the map an isomorphism? When is there a left inverse?

Definition. We say that a R-module homomorphism « : M — N is left split if
there exists 8 : N — M a map such that o a =idy,.

Remark 53. o : M — N is left split if and only if for all R-modules K the
induced map Hompg(a, K) : Hompg(N, K) — Hompg (M, K) is onto.

Proof. Assume « is left split, so that N ~ M @ L via a. Then just extend any
map f: M — K just by defining it to be zero on L. In other words

Homp(N, K) ~ Homg(M, K) ® Homg(L, K),

so that Hompg (N, K) — Hompg(M, K) is onto.

Conversely assume that the map Hompg(a, K) : Homg (N, K) ~ Homg(M, K)®
Hompg(L, K) is onto for all R-modules K. Choose M = K, then we can
lift the identity map idp; : M — M to a map 8 : N — M, and clearly
Hompg(a, K)(8) = 8o a =idy, so that « is left split. O

Remark 54. If M is finitely generated it is enough to check just for all K finitely
generated.

Proposition 54. Let k — R 5 S. Then

(1) The natural map S @p Qg — Qgyi is left split if and only if for all
S-modules N and for all D € Derg(R,N), D can be extended to a k-
derivation D : S — N.
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(2) The natural map S @r Qg — Qg is an isomorphism if and only if the
extension 1S unique.

Proof. (1) Rephrasing the statement we have to prove that S@rQr /i — Qg/i
is left split if and only if Dery (S, N) — Derg (R, N) is onto. But we know
that

Dery (S, N) = Homg (g5, N) — Homp(Qg/i, N) = Dery (R, N).
By Hom-tensor adjointness we get
Homg(Qg/i, N) = Hompg(Qp/, Homg(S, N)) ~ Homg(Qg/, ®r S, N),

which is onto if and only if the map S ®g Qg — g/ is left split by
Remark 53.

(2) With the same argument used in (1) we have that the extension is unique
if and only if Dery (S, N) ~ Dery(R, N), if and only if Homg(Qg/s, N) ~
Homg(Qp/r ®r S, N), if and only if the map S ®r Qp/p — Qg is an
isomorphism, since the statement is true for all S-modules V.

O

Corollary 55. Let W C R be a multiplicatively closed set, where R is a k-
algebra. Then

Qr/k Or Bw ~ (Qrsk)yy ~ Uy k-
Proof. Consider k — R — Ry . By the above proposition the corollary holds if

and only if
Dery(R, N) =~ Dery(Rw,N) for all N.

Let D: R — N be a k-derivation. Uniqueness is forced, in fact for w € W:

D(r)y=D (w%) =wD (%) + %D(w).

Hence
T

D(ﬁ) _ D(r) = 5D(w)
w w

is forced. Finally note that using this equality as a definition, we get a k-
derivation D : Ry — N, so that Derg (R, N) ~ Dery(Rw, N) and the corollary

is proved. O

Remark 55. Suppose k — k' is a ring homomorphism and suppose R is a k-
algebra. Write R’ := R ®; k’. Then

k?/ ®k QR/k ~ QR’/k"
Theorem 56. Consider k — S — S/I = R for some I C S ideal. Then there
exists an exact sequence

I 3 Qg

—_—
2 IQgx

— Qp/x —>0

where d(i + I?) = di + IQg /.
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Proof. The last homomorphism is the natural map
p: R®s Qs —= Qr/ks
but here R = S/I, hence

Qs
IQS/k: '

R®s Qgp =~

Clearly the map is onto, since for all » € R there exists s € S lifting r, and
hence if dr € Qg /i, then ds — dr. By Proposition 51 we also have

Uy o Qs/k
BIE=Sldiiel)
Notice that IQg/, € S(di:i € I), so that
S(di:iel)

ker o =
14 Q1

Clearly I does surject onto S{di : ¢ € I) via i — di, but also for all 4,7’ € I we
have d(ii") = idi’ +i'di € IQg/y, so that we get

I a Qs »
il o .
12 Q)1 L/ 0
\ /
S(diiel)
IQsk

O

Example 29. Let k be a field of characteristic not equal to 2 or 3. Let also
S = klz,y] and let R = S/(f) = k[z,y]/(z* + y* — 1). We know that Qg ~
Sdx @ Sdy ~ S2. Also f € S is a regular sequence, so that

L=s/n=r

Also Qg1 ®s R~ Rdx © Rdy ~ R?. Therefore we have an exact sequence

(2z,3y) 2
R———R"—= Qg —=0

because here the map d is given by the partial derivatives of f. Since 2,3 are
units in R we have that (2x,3y)R = R, that is (2, 3y) is unimodular. Therefore
we get

QR/k DR~ R?

and in particular 2g/ is projective.
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Example 30. Describe Qp/, where R = k[z, y, 2]/(z2,y3, 2%), assuming 6 is a
unit in k. Then we have an exact sequence

RP—— >R — Qg —=0,

20 0 0
0 3y2 0
0 0 423

Q Nﬂ@i@i
BIE= ) 7 () 7 (23)

so that

Definition. Let k — S — S/I = R be as above, so that we have an exact
sequence

I 3 Qg

2 10
/k

%QR/k —0.

If S = k[z,] is a polynomial ring, then we denote kerd =: ['r/k- One can prove
that the definition does not depend on the choice of the presentation .S.

Theorem 57 (Jacobi-Zariski sequence). Let k — R — S be ring homomor-
phisms. Then we have an exact sequence of S-modules

Ls/ —=Tg/p —= S ®@r Qp/r —>= Qg —> Qg/p —> 0.

Furthermore, if Qg is flat over R, then we can add S @r T gy on the left, i.e.
the following sequence is exact

S®OrTRr/k —=Ts/ —=Tg/p —= S Or Qr/x —= Qg —= Qg/p —=0.
Proof. To define I'.;. we can choose any presentation for R. Let us choose

A _ klzx,y] B
7 —7 a.nd S—iL —.f,

where L = L/IB. Notice that there is a short exact sequence

IB ., L>+IB L
0 L2nIB —  L? %

/

e ~ 1B
IE] ®RS_LIB

—=0

. L _ _ L
? ~ L2+IB
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therefore we get a commutative diagram

L L

5 7
ia@ ia |

0 — (@, Rdzy) ®r S — @A’U (Sdxy @ Sdy,) — @, Sd, —=0

| | |

I
ﬁ@)RS

l

Qp/k @r S Qr/k Qs/r
v v v
0 0 0

where

I
ﬁ@RS% (@Rdmx) ®RS%QR/;€®RS%0
A

is exact because tensor product is right exact. Hence, by the Snake Lemma we
get a long exact sequence

ker(&@ 1) 4>FS/I€ —>F5/R—>S®R QR/k %QS/k %QS/R — 0.

For the last statement assume that g/, is flat over R. By definition we have
an exact sequence

I a
2

@Rdx)\ %QR/k —0
A

C
) / \ )
and since Q gy, is flat and @, Rdzy is free we have that C is flat over R. Tensor
the first half of the sequence to get

0—Tr/y —>

CRrS—0

P

(GBA Rdx)\) Rr S

®Rr S

I
Tor{(C,S) =0 —=Tp/y ®r S —= B

Hence ker(d® 1) ~ g/, ®p S. O

4 Quasi-unramified maps

Definition. Let k¥ — R be a ring homomorphism. R is quasi-unramified over k
if for all k-algebras T and for all ideals J C T such that J? = 0 the map

Hom®#(R, T) — Hom®®(R,T/J)
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is injective.
Remark 56. The definition is the same as the one of unramified, except for the
fact that we are not assuming that R is a finitely generated k-algebra.

Theorem 58. Let k — R be a ring homomorphism. Then R is quasi-unramified
if and only if Qi = 0.

Proof. Recall that Qp /. =~ S| F2, where .# is given by

0—Y—R®; R—R—0

res—-rs

Suppose R is quasi-unramified. Set T = R®y R/.#2 and J = .# /9% C T, so
that T/J ~ R ®y R/.# ~ R. Consider the following diagram

rv— T rel

Then we have to liftings of the identity, hence they have to coincide. Hence
rRl+ L2 =1®r+ 72 iec.

rel-19re 72

These elements generate .#, therefore .# = .#2 and

5

Conversely assume Qr/;, = 0 and suppose we have a diagram

R—— = =T

\\\\\x3ﬁ////
T/J
We want to prove that « = 8. Consider the ring homomorphism

¥

Ry R T

r® s+ a(r)p(s)
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Notice that ¥(r ® 1) — (1 ® r) = «a(r) — B(r) € J because a = 8 mod J.
Hence 1(.#) C J and therefore 1(#2) = (7)) -4(F) C J*> =0. But ¥/ 9% ~
Qpr/k =0, and hence ¥(.#) = ¢(#2) = 0. Therefore, for all r € R

a(r) =B(r) =¢(rel-1er) =0,
that is a = 5. O
Corollary 59. Let k — R — S be ring homomorphisms. Then
(1) If S/k (i.e. S is unramified over k) is unramified, then so is S/R.
(2) (Transitivity) If R/k and S/R are unramified, then so is S/k.
Proof. Use Jacobi-Zariski sequence and the previous theorem. O

Example 31. Let k be a field and let £ C £ be a finite separable field extension.
Then there exists a primitive element, say

(f(=))’

with f’(a) # 0. We have an exact sequence

=k(a) ~

f(z)
d Q
f2(5(:) ldx Z/k4>0

f'(@)
Then €/, = 0 and therefore £/k is unramified.

Example 32. Let W C R be a multiplicatively closed set. We have already
seen that Qg /g =0, hence Ry /R is unramified.

Example 33. Let k — k[z]. We know that
therefore k[z] is not unramified over k.

Example 34. Let R be a ring and let I C R be an ideal. One can easily prove
that Qr/r)/r = 0, hence the map R — R/I is unramified.

Example 35 (Base Change). Let k¥ — R be quasi-unramified, and let & — &’/
be another ring homomorphism. Then

Qr/k Ok k' ~ Qrer /i

therefore k¥’ — R is quasi-unramified too.
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Definition (Separable algebraic). Let k be a field, and let k be its algebraic
closure. Then o € k is said to be separable over k if (f, f') = 1, where f(z) =
min(«, k) the minimal polynomial of « over k. A filed extension k C [ C k is
separable over k if every a € [ is separable over k.

Remark 57. (f, f') = 1if and only if f(x) has distinct roots in k[z].

Remark 58. Let k C k' C 1 C k be field extensions, and assume [ is separable
over k. Then [ is separable over k', because the minimal polynomial of o over
k' divides the minimal polynomial of « over k.

Remark 59. Let k C | = k(a) be a simple algebraic field extension. Then [ is
separable over k if and only if £ — [ is unramified.

Theorem 60. Let k C ¢ C k be field extensions, with k C £ finite. Then the
following facts are equivalent:

(1) ¢ is separable over k.

(2) Qg/k =0.
(3) Tepr = 0.
Proof. (2) < (3) We can write
0 k[xl,...,xn],
m

where m is a maximal ideal, and we know that
m
dimg 5 = n,
m
since k[z1,...,x,] is regular. There is an exact sequence of ¢-vector spaces
m g T
0—=Typ —= 2 %@dei%Qg/k —0.
i=1
Looking at the dimensions we get
dimg Ql/k = dlmz Fg/k,
and this implies the equivalence between (2) and (3).
(2) + (3) = (1) Let v € ¢, and consider k C k(a)) C £. Using the Jacobi-Zariski
sequence we get

Coska) —= Qi(a)/k On(a) £ Qo —= Qyyp(a) —= 0.

By assumption €24/, = 0, and hence /o) = 0. But since we have already
shown that (2) = (3) we have also that I'; /() = 0, and therefore

Qs(a) /k Dk(a) £ = 0.
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Since k(o) — £ is faithfully flat (it is just a field extension) we have Q) = 0,
and hence « is separable over k.

(1) = (2) Use induction on m = [¢ : k]. The case m =1 is clear. Now assume
m > 1, and choose o € ¢\ k. Then ¢ is separable over k() by transitivity. By
induction 2/x(a) = 0, and also Q(4)/x = 0 since « is separable over k. Then,
using the Jacobi-Zariski sequence we get

Qr(a)/k k() £ =0 —>= Qs —= Qi) =0,
and therefore €2/, = 0. O

Theorem 61. Let k be a field and let R be a finitely generated k-algebra. Then
the following are equivalent:

(1) k — R is unramified.

(2) R~k x...xk., where each k; is field which is finite and separable over
k.

Proof. (2) = (1) One can prove that if R ~ ky x ... X k;,, then

QR/k ~ @Qk1/k

=1

Since each k; is finite and separable over k, by Theorem 60 we have €,/ = 0
forall i =1,...,r, and hence g/, = 0.

(1) = (2) Let m € MaxSpec(R). Then R — R/m? is unramified, and by
transitivity k — m/m? is also unramified. Call A = R/m? and call m4 = m/m?
its maximal ideal. Since R is a finitely generated k-algebra, by Nullstellensatz
I = A/m is a finite algebraic extension of k. In particular dimg A < oo, because
[l : k] < oo and A is artinian, hence dim; A < oo. Consider

0— 9 —Ax A— A—(,
so that
f/fQZQA/kZO.

Then .# = .#? and it is finitely generated, hence .# = (e), where e?2 =eis an
idempotent. Assume now k = k is algebraically closed, so that [ = k. Notice
that

A®kA
myQp A+ AR, my

~ (AR A)@al=(A@r A)@sk=kerk=EF,

is a field, therefore ms ®, A+ A®im4 is a maximal ideal in A®y A, but it is also
nilpotent since m% = 0. This means that A ®; A has only one maximal ideal,
and therefore it is local. But a local ring has no trivial idempotents, and hence
e =0,1. Clearly e # 1, otherwise A = 0. So .# = 0 and therefore A ®; A ~ A.
But then

dimk A= (dimk A)Q,
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which implies dimy A = 1, and then m4 = 0, which is m = m2. This again
implies that m is generated by an idempotent. Since R is noetherian, and m
was an arbitrary maximal ideal in R, R must have only finitely many maximal
ideals (a noetherian ring cannot have infinitely many idempotents) and also

R~kx...xk,

proving the theorem in the case k = k. Back to the general case, by base change
we have _

Q(R@;CE)/E >~ QR/k Rk k= O,
so that R®@i k ~ k x...xk (r copies) by what we have already proved.

Therefore B
dimg R = dim; R @k k =7

Moreover k < k is of course a flat extension, therefore
R=R®yk— R®k.
This implies that R is reduced, and hence is a direct product of fields:
R~Fk x...xkg,

where each k; C k is finite over k and Y_;_,[k; : k] = r. Finally, since 0 =
Qp/p = @le g, /x we have that each Qy, /,, = 0 for all i = 1,...,s and hence
each k; is separable over k£ by Theorem 60. O

Proposition 62. Let ¢ : R — S be a homomorphism of noetherian rings,
and assume S is a finitely generated R-algebra. Then the following facts are
equivalent:

(1) R— S is unramified.
(2) For allQ € Spec(S), set q = ¢~ 1(Q), then k(q) — S®@rk(q) is unramified.

Proof. (1) = (2) Let Q € Spec(S) and let q be as above. By base change we
get

Qsenk@)/k@) = Ls/r Or k(a) =0
since R — S is unramified. Therefore S ®p k(q) is unramified for all @ €
Spec(S).
(2) = (1) Since S is a finitely generated R-algebra we have that Qg/g is a
finitely generated S-module. Then to show g,g = 0 it is enough to show that
(R2s/r)q = 0 for all Q € Spec(S), and hence it is enough to show (Qg/r)q = 0
for all q € Spec(R) since

(Qs/r)q = (Ls/R)p(R~q)

and then
(Qs/r)q = ((QS/R)Q@(R\q))Q
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is just a further localization. By base change
(Qs/r)q = Qs/r ®r Rq =~ Qs /R,
Qs,/R, 1s finitely generated, and hence by NAK it is enough to show that

Qs, /R,

=0.
A2s, /R,
Finally, by base change

Qs, /R,
aQ2s, /R,

~

R
~ (Qs,/r,) ®r, ﬁ ~ Qs®rk(a)/k(a) = 0-
0

Theorem 63. Let R — S be a homomorphism of noetherian rings, and assume
S is a finitely generated R-algebra. Then the following facts are equivalent:

(1) R— S is unramified.

(2) For all q € Spec(R), S ®gr k(q) ~ k1 % ... x k., where each ki is finite
and separable over k(q).

Proof. Follows immediately from Theorem 61 and Proposition 62. O

Theorem 64 (Local Structure Theorem). Let (R,mg) — (S, mg) be essentially
of finite type (i.e. S is the localization of a finitely generated R-algebra). Assume
R — S is quasi-unramified. Then there exists a R-algebra

N <<f<[g>>Q

such that
(1) f is monic and f'(z) € Q.
(2) There ezists a surjective map R — T — S such that

T S
mRT o ms.

Example 36. Consider C — Clz] and let ¢ = (0). Then
Clz] ®c k(q) = Clz] ©c C = Clz],

which is not finite over C. Then C — C[z] is not unramified.
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Example 37. Consider Clz] — ~S42%_ ~ C[¢2,#3]. Prime ideals in C[z] are (0
(22 —y3)

and (x — a), with o € C. First let us check q = (0):

Cleyl \ _ C@)ly
CX) = <<x2 —y3>>q @)

The polynomial 2% — y3 is irreducible in C(x)[y], hence C(X) — % is

unramified. Let now q = (z — «), so that we get

Clz, y]
(z2 —y3) (@2 —y3)
Clz,y]

If @ = 0, then this extension is not unramified, so that C[z] — =) itself is
not unramified. Notice that to make it unramified it is enough to invert y or

y?, i.e. to consider - Clz, y]
- ()
Clz] - ( m >J

5 Quasi-smooth maps

Cly]

C:C@k((x—a))—>< )®k((x—a)):

or similarly

Definition. Let £ — R be a ring homomorphism. R is quasi-smooth over k if
for all k-algebras T and for all ideals J C T such that J2 = 0 the map

Hom®®(R, T) — Hom®'8(R,T/.J)

is surjective. R is quasi-étale over k if & — R is quasi-unramified and quasi-
smooth.

Remark 60. As for quasi-unramified and unramified, these definitions the same
as the ones of smooth and étale, except for the fact that we are not assuming
that R is a finitely generated k-algebra.

Theorem 65. Let k — R be ring homomorphism. Then it is quasi-smooth if
and only if

Pr/x =0 and Qg is a projective R — module. (3.1)
Proof. We want to find a condition equivalent to (3.1). Write R = k[z,]/I, then

we have to following defining sequence:

[
=5 —2= P Rdz; — Qg — 0, (3.2)

0 r
—_— R/k%]-

Hence (3.1) holds if and only if there exists ¢ : @ Rdx; — I/I? splitting map
for d.
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Claim. (3.2) holds if and only if
365 € I such that f(xy —d0y) € I°Vf € 1. (3.3)

Proof of the Claim. Assume (3.2) holds. This is true if and only if there exists
Y : @ Rdx; — I/I? such that for f € I we get

3 of 2
w < )832,\ x)\) f + )
that is if and only if there exists §y = ¥ (dx)) such that

OF 53 = flax) + I
8:@

Recall now that
flar, ... zy) :f(al,...,an)+zf(zj—ozj) mod (21 —aq,..., T, —ap)>
J
Set a)y = x) — dy, so that
f(x zn) = flzy — 6 )+Za—f5 mod (8y)2
LyeeeyTn) = P EIN .

Since dy = v(dxy) € I we have that (§))% C I?. But also f(z)) = Z%‘SA
mod I?. Hence we get
f(.’[?)\ — (5)\) € .

Conversely assume f(xy — dy) € I2, then we can define 9 : dwy + 6y + I°.

So it is enough to prove the equivalence quasi-smooth if and only if (3.3).
Assume (3.3) holds, then consider a diagram

klz,]

/

R—bp—

SN =—9

with J2 = 0. Let ry = w(x)) = ox + I, and @(ry) = tx + J. k[z,] is just a
polynomial ring, therefore we can define a map

k[.’L‘)\] —T

T\ 1)
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We need to find €y € J such that for all f € I, f(tx —ex) = 0. If we can find
such €, then we can send r) — t) — €y and get the required lifting of . Set
ex = ¢(0x) € J, because ¢(I) C J by commutativity of the following diagram

Finally, since by assumption we have f(zy — ) € I?, we get

fltx —ex) = o(f(zx —0r)) € J* = 0.

Conversely assume k — R is quasi-smooth, then construct J, as follows. If
R = k[z,]/I set T = k[z,]/I?, and if J = I/I? then T/J ~ R. By assumption
we get a diagram

T

7
e
$Y -
e
e
e
-
=R

idr

R

<IN

Therefore p(z) + I) = x) — dy for some ) € I. This implies, for f € I:
0=o(f) = flzx—0x) €T,
so that f(xy — dy) € I O

Ezercise 1. Let W C S be a multiplicatively closed set, R — S a ring homo-
morphism. Then

(Ts/r)yw = Tsw/r

Corollary 66 (of Theorem 65). A ring homomorphism R — S is quasi-étale if
and only if T'g/p = Qg/r = 0.

Proof. Quasi-étale if and only if quasi-smooth and quasi-unramified, if and only
if

I's/gr = 0 and Qg is projective (quasi-smooth)
Qg/r = 0 (quasi-unramified)
which is clearly equivalent to the condition I'g)r = Qg/r = 0. O

Corollary 67 (Transitivity). Let k — R — S be ring homomorphisms. If
k — R and R — S are (quasi-)smooth, then so is k — S.
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Proof. Use the Jacobi-Zariski sequence:
Ik @r S —=Tg/p —=Tg/p —= Qr/x Or S —= Qg —= Qg/p —= 0,

where the first map comes from the fact that k¥ — R is quasi-smooth, and hence
Qpg/k is projective, and in particular flat. Also, since R — S is quasi-smooth,
we have I'g)r = 0 and Qg is projective. Therefore the final part of sequence
above splits:

Qs ~Qs/r @ (Qr/k ®r S) .
Moreover, Qg /. is a projective R-module, and as a consequence Q2 @r S is a
projective S-module. This shows that g/, is a projective S-module. Finally,

I'syr =gy = 0 since k — R and R — S are quasi-smooth, therefore I'g/, = 0
by the sequence above. By Theorem 65 we get that k — S is quasi-smooth. [

Theorem 68 (Cartier-Mac Lane). Let k be a field and let k C I be a finitely
generated field extension. Then

dimyg €/ = dimg Iy + tr.deg L.

Proof. We have discussed the case in which tr.degipl < oo, i.e. when ¢ is al-
gebraic over k. Now assume n = tr.degif > 0, and fix a transcendence basis
Ziy..., Ty of £ over k. Set E := k(x1,...,z,), and consider the inclusions
k C E C/, where E C { is now algebraic. Then we have

P ®@pl—=Typ —=Typ—=Qpmn Qg l—= Qi —= Qyyp —=0,

where the first map comes from the fact that Qg is clearly flat, being E a
field. Consider k — E, which is a purely transcendental extension. Notice that,
if we set R := k[z1,...,2,] and W = R ~ {0}, then we have that E = Ry .
Since R is a polynomial ring over k we have that

QR/k >~ éRdx“
i=1

and in particulare it is a free R-module. Localizing at W we get that

i=1

Also, I'g/, = 0 since we can just choose I = 0 in the presentation of R as an
algebra k[z1,...,x,]/I over k. Putting things together, and going back to the
Jacobi-Zariski sequence we get

0—=Typ —>Lyp—0"—=Qp —= Qg —=0,

because

i=1 =1
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Every module is finitely generated in the sequence, therefore dimension over [
are finite. From the sequence we get

dimy Qg/E +n + dimy Fl/k = dimy Qg/k + dimy F@/E.

From the algebraic case, since E' C £ is algebraic, we know that dimg €y, p =
dimy I/, therefore

tr.deg, ¢ + dimy FZ/k =n 4+ dimy Fé/k = dimy QZ/k



Chapter 4

Basic element theory

1 Basic sets and basic elements

Definition. Let R be a commutative ring with 1. A subset X C SpecR is
said to be basic if

(i) X is Noetherian (i.e. it has DCC on closed sets)

(ii) If po € X for a € A, and ﬂ Po € SpecR, then ﬂ Po € X.
aEA aEA

Remark 61. Finite intersection of primes which are not nested are never prime.
Therefore the interesting cases in (ii) of the above definition happen when the
intersection is infinite.

Remark 62. If R is Noetherian, then SpecR is Noetherian. But the converse
does not hold in general.

Example 38. (1) When R is Noetherian, X = SpecR clearly is basic.
(2) When R is Noetherian,

X =j—SpecR= (pecSpecR|p= ﬂ m

pCm
m maximal

is basic.
(3) When R is Noetherian,
X' :={p € SpecR | htp < i}
is basic.

(4) If X is basic and F C SpecR is closed, then X N F is basic.
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Discussion. Closed sets in the Zariski topology on R are of the form
V(I)={p € SpecR |I Cp}= V(\ﬁ) +— SpecR/I.

It’s the weakest topology that makes ring homomorphism continuous, that is if
¢ : R — S is a ring homomorphism, then there is an induced map ¢* : SpecS —
SpecR on spectra, and it has continuous in the Zariski topology. A basis of open
sets is given by {D(f)}ser, where

D(f) ={p €SpecRR | f ¢ p} «— SpecR;.
Definition. Let X be basic, and let p € X. Define
dimx p:=sup{n |Ip=po T p1 S ... C pn, with p; € XVi}.
If X = SpecR then notice that dimy p = dim(R/p), the Krull dimension.
Proposition 69. Let X be basic. Then

(i) Fuvery closed set F' C X is a finite union of irreducible closed sets in X.
Recall that a set is irreducible if it cannot be written as a proper union of
smaller subsets.

(i) If F C X is not empty, closed and irreducible, then F' has a generic point
in X, i.e. F=V(p)NX for somep e X.

Proof. (i) It follows from the Noetherian property: given F' C X closed, if it
is irreducible we are done. If it is reducible we can write it as a union of
two smaller closed sets. Then repeat of the smaller sets, and the process
ends by DCC.

(ii) Write F'=V(I) N X for some ideal I C R. Set

Po:mp-

peF

Notice that pg € X since X is basic, and also F' = V(po) N X. In fact
F C V(pg) N X, because if p € F, then p O pp. On the other hand
Vipo)NX CV{I)NX = F since I C p for all p € V(pp) by definition
of pg. Hence, without loss of generality we may assume I = py.We want
to prove that pg is prime. If not there exist ab € pg such that a ¢ py and
b ¢ po. Set Fy :=V(po,a)NX and Fy := V(pg,b)NX. Then F = F U Fy,
in fact it is clear that Fy U Fo C V(pp) N X = F. On the other hand, if
p € F, then py C p and therefore ab € p. But p is prime, therefore a € p
orbep. So F = F) UF, By irreducibility, we have F' = F} or F = Fj,
say F' = Fy. But then (pg,a) C po, that is a € po and hence pg is prime.
O

Notation. Let R be a ring, M € Mod™(R) and let p € SpecR. Define
prp (M) := dimy () My /pMy = pig, (M),

where the last equality follows by Nakayama’s lemma.
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Lemma 70. Let M € Mod®(R). The set
F, ={q € SpecR | puq (M) >t} C SpecR
is closed.

Proof. For t € N* consider the ideal

It: Z [(mi17...,mit71):RM],
My sy €M
i.e. the sum of colons of M into any submodule of M generated by t—1 elements.
Suppose p € SpecR is such that Iy C p. Then p, (M) > ¢, in fact if not there
exist t — 1 elements mq,...,my—1 such that (mi...,my_1), = M,, and since
M is finitely generated this implies (mq,...,m¢—1) :g M € p (basically clearing
denominators). On the other hand, if I; Z p, then there exist my, ..., m;_1 such
that (mq,...,my—1) :r M € p, that is M, = (m1,...,m4_1)p, and therefore
tp (M) <t — 1. This shows that I; defines F;. i.e. F; =V (I;) is closed. O

Crucial Lemma 71. Let M € Mod™(R) and let X C SpecR be basic. Then
there exists a finite set of primes A C X such that if p € X A, there exists
q € p such that

frq (M) = pup (M) .

Proof. By Lemma 70, for all ¢ € N* F} is a closed subset of SpecR. By Propo-
sition 69 F; N X is a finite union of irreducible closed sets, that is

FnX=JVp.)nX,
1EAL

for prime ideals p; ; € F}. Define

A= U{pi,t | t:05-~-aN(M)7i€At} gXa

which is a finite set. If p € X N A, set t = pp, (M). Then p € F; N X, ie.
p € V(pi) for some i € Ay. Then p,; C p, and the containment is strict
because p ¢ A, while p;; € A. But by definition p;; has at least ¢ generators,
therefore

where the second inequality follows from the fact that p;: C p, and therefore
the minimal number of generators potentially decreases when further localizing
at p;+. But then we have

pp (M) = pp, ,(M).
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Definition. Let R be a ring and let M be an R-module. Then z € M is a
p-basic element if
pip (M) > pp (M/Ra)

which means that x is part of a minimal generating set of M,. An element
x € M is called X-basic if it is p-basic for all p € X.

Theorem 72 (Eisenbud-Evans). Let R be a commutative ring with 1g (not
necessarily Noetherian). Let M € Mod™®(R) and let X be a basic set. Assume
that

(1) (a,y) € R®& M is X -basic.
(2) For allp € X we have py (M) > 1+ dimx p.
Then there exists z € M such that y + az is X -basic.
To prove the theorem we need a few more auxiliary definitions and results.
Notation. In the assumptions of the theorem, for p € X and for S C M set
Gp (S) = pp (M) — pp (M/RS),
where RS denotes the R-submodule of M generated by the elements in S.

Remark 63. There is a short exact sequence
0— RS — M — M/RS —0.

Localizing at p and then tensoring with k(p) gives

RS o M, M,
—_— e
pRyS pM, Ry, S +pM,

These are k(p)-vector spaces and, if we denote by k(p)S = Im(«), we have

Remark 64. Let X C SpecR be basic and let S C M be as above. Let A C X
be as in the Crucial Lemma 71. Then for all p € X \ A there exists ¢ € X such
that g C p and 4 (S) < d, (9).

Proof. Let M' = M/RS. By the Crucial Lemma 71 we know that except for
finitely many primes p € X (the ones not in A) there exists ¢ C p such that
pp (M') = pg (M'). Also, pp (M) > pq (M) always holds since it is a further
localization. But then

0q (S) = pq (M) = pq (M) < pry (M) — pryp (M") = 6, (S) .
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Definition. Let X be basic and let p € X. A subset S C M, where § =
{z1,...,2,} is called p-basic if

9y (S) > min{n, 1+ dimx p}.
If S is p-basic for all p € X, then S is said to be X-basic.

Remark 65. Suppose S = {z} and p € X. Then S is p-basic if and only if z is
p-basic, i.e. the two definitions coincide when S consists of one element.

Proof. If S is p-basic, then J, (S) > min{1,1+ dimx p} = 1, then
pp (M/Rx) < i (M),

i.e. x is p-basic. Conversely, if z is p-basic, we have p, (M) — pp (M/Rx) > 1,
that is d, (S) > 1 = min{1,1 + dimx p}, so that S is p-basic. Notice that
we always have p, (M) — pp (M/Rx) < 1, therefore if S = {z} is p-basic we
necessarily have 4, (S) = 1. O

Remark 66. Suppose X is basic and M satisfies (2) in Theorem 72, that is
tp (M) > 1+ dimx p for all p € X. Let S be any (finite) set of generators of
M. Then for all p € X

Op () = pp (M) — pp (0) = pp (M) 2 1+ dimy p > min{|S], 1 + dimy p},
and therefore S is X-basic.

Main Lemma 73. Let S = {z1,...,2,} C M be X-basic. Assume that
(a,z1) € R® M is X-basic. Then there exist ay,...,an—1 € R such that

S =1z, .2l 1} ={x1 + a1z, 22 + a2%0, ..., Ty 1 + apn_ 120}
1s X -basic.
Proof. We claim that for any choice of ai,...,a,_1, S' is p-basic for all but

finitely many primes in X. In fact recall Remark 64, and let p € X ~. A. Notice
that R(S’ U {z,}) = RS, and therefore

p (8") = 0, (S) = min{n, 1 + dimx p},
because S is X-basics by assumption. But we also have
pp (M/RS) = pp (M/R(S"U{2y})) < pp (M/RS') = 1,

therefore d, (S”) > 6, (S) — 1. By Remark 64 there exists ¢ C p, q € X such
that dq (S) < Jp (S). Putting things together:

05 (8") 26, (8) —1204(S)—1>min{n,dimxq} —1=>

> min{n — 1,dimy q} > min{n — 1,1 + dimx p},
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where the last inequality follows from the fact that the containment q C p is
strict. Now set {p1,...,pr} = A, which are the primes for which the claim does
not hold. Choose p,. minimal among the p;’s in A. By induction on r we assume
that we can choose as,...,a,_1 such that S’ is p;-basic for all i =1,...,r — 1.
By minimality we can now choose ¢ € py - ... Pr_1 N\ p,-. Set

xf =z + achrx,
xly = xh + chaxy,

for some by, ..., b,_1 to be determined. Set S” = {z{,..., 2"} Fix1 <i<r—1
and set M(p;) = M ® k(p;). Since ¢ € q; we have 97;’ = g in M(p,), for all
j=1,...,n— 1. Therefore d,,(S") = d,,(5"), and so S” is p;-basic since 5’ is.
Now we need to choose by, ...,b,_1 so that S” is also p,-basic. We distinguish
three cases:

(a) @f,..., 2! | arelinearly independent in M (p,.). Then we have a short exact
sequence
n—1
T M(Fr) M
0—>» k(p)z,—Mp,) — ——F——= = ») —>= 0.

Since they are linearly independent we get
8p,.(8")=n—1>min{n — 1,1+ dimx p, },
so just take by = ... =b,_1 =0.

2, = 0. Since (a,z1) is X-basic y assumption, we have a ¢ p,., otherwise

b) z; =0. S X-b b h h
(a,z1) =0in (RS M) ® k(p,), and it cannot be basic. Set by = 1, by =
... =by_1 = 0. The image of S” in M(p,) is then

k(p,)S = k(pr){acxn,?g, cexh gt

By choice of ¢ and by what we just observed we have that @c is a unit in
k(p,), hence

k(p,)S" = k(pr){?w R T
But z} = x; + cb;xy,, therefore

k(pr)S" = k(p,){Z2, ..., Tn1,Tn }-

Finally, by definition of z} we have 0 = 2] = 71 + A\, for some ), and
therefore T1 = A\Z,, in k(p,). Therefore

k(py)S" = k(p,){T1, ..., T} = k(p,)S,
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which gives
8p,.(8") = 6,,.(S) = min{n, 1+ dimy p,} > min{n — 1,1+ dimx p,},
that is §” is p, basic.

(c) 2 # 0 and o%,...,2/_, are linearly dependent in k(p,). There exists

1 <i<n—1such that x; is not zero and can be expressed in terms of the
others. Set b; =1 and b; = 0 for all 4 # j. Then

k(p.)S" = k(p){z), ..o} +n,... 2, |} =

~

=k(p){2), . Ty sy, T}

because x can be expressed in terms of the others. Now, ¢ is a unit in
k(p,), therefore

k(pT>SN = k(pr){xilh s 7&7 B '7m;—17ﬁ} = k(pr){xih s 7'7;2727 s aﬁ}

Finally, since

~

l:E+AEE k(pr){;au"'7;27"'71.{,7,717E} = k(p’r){xilaaxgﬂ7m}
we also get x; € k(p,){Z1,... Ty ,Tn}, that is
k(p)S" = k(p){Z1, .., Tiy -, Tn ) = k(pr)S

and therefore S” is p,-basic again.

We are now ready to prove Eisenbud-Evans’ theorem 72.

Proof of Theorem 72. Let S = {y,x2,...,2,} be a generating set of M. Set
x1 := y. By condition (2), that is p, (M) > 1 + dimx p for all p € X and by
Remark 66 we have that z; is X-basic. By the Main Lemma 73 we can find
ai,...,a,_1 such that

! / /
S ={r1 +aa1xn, x5, ..., 2, _1}

is X-basic. Notice that the cardinality of S’ is one less than the cardinality of
S. Repeat the process until the cardinality of the set, say S’”, is one. But then
S" ={x1+az} = {y+az} for some z € M, and S” is X-basic. But by Remark
65 this exactly means that y + az is X-basic. O

Corollary 74 (of Theorem 72). Let R be a commutative ring with 1g, let X
be basic and let M € Mod™(R) be such that ju, (M) > 1+ dimx p for allp € X
(i.e. it satisfies just (2) in Theorem 72). Then there exists z € M which is
X-basic.
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Proof. Set a =1, y =0. Then (1,0) is always X-basic in R@® M, and therefore
by Theorem 72 there exists z € M such that z = y 4+ az is X-basic. O

Corollary 75 (of Theorem 72). Let R be a Noetherian ring of dimension d and
let I C R be an ideal. Then there exist d + 1 elements ay,...,aq441 Such that

ICy/(ar,... adq41)

Proof. Let M = @I, and take X = SuppM, which is closed in SpecR (because
M is finitely generated) and hence basic. Note that for p € X

pp (M) = (d+ Dpy (I) > d+ 1 > 1+ dimy p.

The first inequality follows from Nakayama’s Lemma, while the second is be-
cause p € X = SuppM. By Corollary 74 there exists z = (a1,...,a4+1) € M
which is X-basic.

Claim. I C +/(a1,...,04+41)-

In fact if not there exists p D (aq,...,aq4+1) such that p 2 I. But then
My = &I, = R,

ie. (a,...,aq41) € pRgH. By Nakayama’s Lemma this contradicts the fact
that z = (a1,...,a4+1) is basic. O

2 Basic elements and Projective modules

Question. What does it mean for any element z € P to be basic at q € SpecR
if P is a finitely generated projective module?

Discussion. Assume that P = R! is free, and that z = (21,...,2;) € P. Then
z is g-basic if and only if it is a minimal generator for Rp, ie, z ¢ qR}. But
this is equivalent to say that (z1,...,2:) € q (where here we mean the ideal
generated by z1,..., 2 in R). This means that (z1,..., z) is a unimodular row
in R}, and therefore

-1
RZ’ZZR@RE .

If P is any projective module, locally we have Py ~ R’; for some t. Therefore
z € P is g-basic if and only if

P, zRg ~ zRq ® Qq
for some Q € Mod"®(R).
Question. Given P € Modfg(R) a projective module and given z € P, what is

U, = {q € SpecR | z is q — basic}?
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Discussion. First suppose P ~ R! is free. Then by the above discussion it is
easy to see that for 2 = (21,...,2:) € R" we have

U, = SpecR~\V((#1,...,2))-

For any M € Mod'®(R) define M*(z) := {f(z) | f € M*}. If P is just projective
and z € P, then we get

U, = SpecR \ V(P*(z)),
since we can localize and easily reduce to the free case.

Corollary 76 (Serre’s Theorem). Let R be a Noetherian commutative ring with
1gr. Let X = j-SpecR and d = dim(j-SpecR). Let P € fgR be a projective
module and assume rank Py > d for all m € max SpecR. Then P~ R® Q.

Proof. First notice that it is stated as a Corollary because it will follow from
Corollary 74 of Theorem 72. Notice that for all ¢ € X = j-SpecR we have (for
q € m € max SpecR)

g (P) = rankPq = rankPy, > d + 1 > dimy q + 1.

Therefore there exists a X-basic element z € P, and then P*(z) = R, ie.
P~Rz®Q. O

Definition. With the same notation as in Chapter 2, we say that n € N defines
a stable range for GL(R) if whenever r > n and (a1, ..., a,) is unimodular, then
there exist by,...,b.—_1 € R such that (a1 + a,b1, a0 + arbe, ... a1 + azbr_1)
is unimodular.

We need the following theorem. We are going to prove just the first part.
Theorem 77. If n defines a stable range of GL(R), then

GLw(R)  GL(R)
W E.® ~ BE®

(2) E.(R) <GL.(R) for all r.

is onto for all m > n.

(8) GL.(R)/E.(R) is abelian for r > 2n.

Lemma 78. Letn define a stable range for GL(R) and let r > n. If (a1,...,a,)
is unimodular, then there exists A € E,(R) such that

((ay,...,a,)A)" = (1,0,...,0)".

Sketch. By adding multiples of the last row to the first r — 1 rows we can assume
that ai,...,a,_1 is unimodular. Then, since it is unimodular, one can add
multiples of the first » — 1 rows to get (ai,...,a,—1,1). Now, adding multiples
of 1 we can clearly get rid of aq,...,a,_1, and finally get to (0,...,0,1). O
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Remark 67. With r > n as above we have that GL,(R)E,+1(R) = GLy1+1(R).

Proof. Clearly GL,(R)E,+1(R) € GL,+1(R). If A € GL,+1(R), then the last
row is unimodular, so there exists E € E,;1(R) such that

_ AT
e[t ]

for A’ € GL,(R). But notice that

[é T] € Er1(R),

and hence
' I (AU A AT CA)TH A 0
AE = AE [0 1 = lo 1o 1 [T|lo 1)
with E/ € E,.;1(R). But this means
A 0]
a=[4
This also proves (1) in Theorem 77. O

Theorem 79 (Bass’ Stable Range Theorem). Let R be a commutative Noethe-
rian ring with 1g. Thenn = dim(j-SpecR)+1 defines a stable range for GL(R).

Proof. Let r > n = dim(j-SpecR)+1, and let (a1, ...,a,) be unimodular in R".
Let M = R"~! be the first 7 — 1 copies of R, so that y = (a1,...,a,_1) € M.
Then (y,a) € M ® R, with a := a,. Since (a,y) is unimodular, it is in particular
basic. Also, for all q € j-SpecR we have My ~ Rg_l, therefore

tg (M) =r —1> dim (j-SpecR),

and hence juq (M) > dim (j-SpecR) 4+ 1 > dimj-gpecr 9 + 1, i.e. (2) of Theorem
72 holds as well. Then there exists z € M which is j-SpecR basic, i.e. there is
z=(b1,...,b.—1) € M such that

y+az= (a1 +abi,...,ar—1+ ab._1)
is j-SpecR basic, that is (a; + a;b1,...,ar—1 + arby—_1) is unimodular. O

Theorem 80 (Bourbaki’s Theorem). Let R be an integrally closed Noetherian
domain, and let M € Modfg(R) be a torsion free module of rank r. Then there
ezists an ideal I C R and an exact sequence

0— R ' M-—>T—=0.

Notice that in particular this implies that cl(M) = cl(I).
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Proof. Let us induct on » = rankM.

o If r =1 then M ~ I is an ideal.

o If r > 1, then pq (M) > rankM, > 2 for all q € SpecR. Apply Corollary
74 to X = X' = {q € SpecR | htq > 1}. Notice that condition (2)
of Theorem 72 is satisfied, therefore there exists x = z; € M which is
X'basic, with R ~ Rx C M (because M is torsion free).

Claim. N := M/R is torsion free.

In fact let 0 # z € R, we need to prove that z is a nonzero divisor in N.
Consider the following commutative exact diagram

0 0
0 R M N 0
I
~zi ~zl | Hz="2
\
0 R M N 0

where the first two vertical maps are inceptive because R is a domain, and
M is torsion free. Also, . is just the map induced by the diagram, and
it is again multiplication by z. By the Snake Lemma we get an inclusion

0 — ker y, —> coker(R —“> R) = R/Rz.

It is enough to show then that Ass(ker p,) = @. Let p € Ass(ker u,), then
we have inclusions

R/p < ker u, — R/Rz,

and therefore p € Ass(R/Rz). But R is an integrally closed domain, and
then z is a nonzero divisor in R. Therefore htp = 1. But localizing at p
we then have that R, is a DVR, and M, is torsion free over R,. However,
torsion free modules over DVR are free, that is M, is free. Recall that
x =, is X '-basic, and therefore it is p-basic. This means that

since z is basic (i.e. unimodular) in a free module. This implies in particu-
lar that N, is torsion free, and therefore (ker ), = 0. Since this happens
for all p € Ass(ker 11,) we must have ker i, = 0, that is N is torsion free.

Now apply the inductive hypothesis to N (since rankN = r — 1 < rankM) to
get an ideal I C R and a short exact sequence

0—R""2_—N—>T—0.
Since N ~ M/R we finally get

0— R '"—>M-—>T—0.
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Remark 68. Recall that, given X basic and M € Mod®(R), a submodule M’ C
M, M’ = R{my,...,my}, is called X-basic if for all p € X

8p (M) = pp (M) — pip (M/M") = min{n, 1 + dimy p}.

It follows from Theorem 72 that if M’ C M is X-basic, then there exists z € M’
such that z is X-basic in M.

Theorem 81 (Bass’ Cancellation Theorem). Let d = dim X, where X = j-
SpecR. Let P € Mod™(R) be a projective module such that rankPy > d + 1
for all ¢ € X (which is equivalent to the same condition for all q € SpecR).
Let Q € Mod™(R) be another projective module, and let M € Mod'™®(R) be any
other module such that

QOM~QoP.
Then M ~ P.

Proof. Notice that M is automatically projective to start with, since we are
assuming that Q ® M ~ Q @ P, and both ) and P are projective. Then we can
choose Q' a finitely generated projective R-module such that Q & Q' ~ R™, i.e.
we can assume that

R"®M~R"®P.

Also, by induction it is enough to show that M ~ P whenever R& M ~ R& P.
Set a: R® M — R @ P the isomorphism, and notice that if «((1,0)) = (1,0),
then clearly we have a commutative diagram

0 R Reo M M 0
I
ideN Nlh | ~
Y
0 R ReP P 0

so that M ~ P. If this is not the case, let a((1,0)) = (a,z1). The goal is to
show that

RoM < RoP RoP RoP RoP

(1,O)i—>(a,x1)i (17*)} (1’0)

are all isomorphism, with 3,+ and 7 to be defined, in order to repeat the argu-
ment above. Notice that, since (1,0) is basic in R® M and « is an isomorphism,
a((1,0)) = (a, 1) is basic in R P. Write P = R{z1,...,z,}, and notice that
for all p € X we have

rankP, = pp, (P) > 1+ dimx p
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by assumption. By Theorem 72 there exists z = x1 + ax € P which is X-basic.
Write © = >_"_, 7;@;. Define

P

R
Iz

Now, the map f: R® P — R & P defined by the matrix

1 O
[ 1p
is an isomorphism since det § = 1. Also,

pa((1,0) = sl = (| '] ()) = (0, J(@) +21) = (@2).

lp I

Recall that, since z is basic, we have P ~ Rz @ P’, and hence there is a splitting
map ¢ : P — R such that ¢(z) =1 —a. Definev: R® P — R @ P via the
matrix _ i
I ¢
10 1p)’

and notice that it is again an isomorphism since dety = 1. Also notice that

Bl =) = (| ) ()) ~ (a+p(z),2) = (1,2).

1p]

Finally, let

g:R———P

2z
and define n: R®& P — R & P via the matrix

1 0
—g 1p|’

which has determinant one, and hence it is again an isomorphism. We have
t
1 0 1
a0 =na = (| 1Y) =wo.
g lp] \#
This proves the theorem. O

Theorem 82 (Forester-Swan). Let R be a Noetherian ring, and let M €
Modfg(R). Set X = j-SpecR N SuppM, which is basic since SuppM is closed
in SpecR and j-SpecR is basic. Then

(M) < sup{dimx p + p, (M)}.

peX
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Proof. Set n := p(M) and t := sup,¢ x{dimx p + pp (M)}. We want to show
that n < ¢. Since we can pass to R/ann(M) we can assume without loss of
generality that X = j-SpecR. By way of contradiction assume that n > ¢,
which in particular means that ¢ < co since M is finitely generated. Since M is
minimally generated by n elements there exists a short exact sequence

0— M'—> R"— M —0,
and tensoring with k(p) for p € X we get
M’ @ k(p) — k(p)" —= M @ k(p) —= 0.
Counting dimensions:
dimy(p) (Im (M’ ® k(p) = k(p)")) = n — pp (M) >t — pp (M) > dimx p.

Therefore
dimy,(py (Im (M’ @ k(p) — k(p)")) = 1+ dimx p

for all p € X, and hence M’ is X-basic. But then, by Corollary 74 there exists
z € M’ which is basic in R™, i.e. it is unimodular (since R" is free). This means

R"~Rz® P.

But rankP = n — 1 > t, therefore we have P ~ R"~! by Bass cancellation
Thorem 81. Since z € M’ we still have a surjection

R"/Rz —> M — 0,

and by what we have just shown we have R"/Rz ~ P ~ R"~! which gives a
surjection
R —s M —0,

contradicting the minimality of n = p(M). O

Corollary 83. In a Dedekind domain D every ideal is minimally generated by
at most two elements.

Proof. Any ideal I C D is projective, since it is locally principal, i.e. p, (I) =1
for all p € SpecD. If p is maximal, then dimx p = 0, therefore dimx p+p, (I) =
1 in this case. If p = 0, then dimy 0+ (o) (/) < 1+ 1 = 2. Therefore

u(I) < sup {dimy p+pp (0 1)} = 2.
peSpecD

O

Remark 69. Notice that, for example when D is semi-local, (0) ¢ X = j-SpecD,
so in this case if 0 # I C D is an ideal we have

p(I) = sup{dimx p+pp (1)} =041 =1,
pex

so ideals are principally generated, and D is a PID.
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Example 39. Let R = k[z1,...,2,] and let M = m be a maximal ideal. By
the Nullstellensatz we know that j-SpecR = SpecR. If p # m we get

dimy p -+ rp (1) = dim (R/p) + iy (R), = dim (R/p) + 1,
where dim (R/p) is the Krull dimension. If p = m we get
dimx m+ pgpym =0+ n,
therefore

sup {dim (R/p)+1,n} =dim(R/0)+1=n+1.
pESpecR

Hence by Theorem 82 we know that u(m) < n + 1. Notice that this is off by

one, since we know that p(m) = n.

Conjecture 1 (Proved). For R = k[xy,...,x,] one can exclude the prime
p =0, so that in the example above we get a tight upper bound.
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