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Chapter 1

Rings, Ideals, and Maps

1 Notation and Examples

Throughout these notes, a ring R is considered a commutative unitary ring.
That is, a triple (R,+, ·) consisting of a set with two operations such that (R,+)
is an abelian group with additive identity 0, and multiplication is associative
with identity 1, distributive: a(b + c) = a · b + a · c for all a, b, c ∈ R, and
commutative: ab = ba.

Further, make note that there is no differentiation between the symbols ⊂
and ⊆. The symbol ( will be used to represent a proper subset.

A ring is a field if for all non-zero elements r ∈ R, there exits r′ ∈ R (denoted
r−1) such that rr′ = 1.

Example 1. The integers, Z, and the fields Q, R, and C are rings.

Example 2. Let Mn(k) denote the n× n matrices over a field k. Choose any
set of commuting matrices A1, . . . , Am ∈ Mn(k). Let R be the k-subalgebra
generated by A1, . . . , Am in Mn(k). I.e. all sums and products of them. Note
that dimkMn(k) = n2. How big can dimk R be?

Examples of building new rings from old ones

Example 3. Let R be a ring. Then R[x], the polynomial ring over R, is
{r0 +r1x+ · · ·+rnx

n|ri ∈ R, n > 0} with the usual addition and multiplication
of polynomials. Note that

r0 + r1x+ · · ·+ rnx
n = s0 + s1x+ · · ·+ smx

m ⇐⇒ n = m and ri = si ∀i.

Inductively, we define R[x1, . . . , xn] to be R[x1, . . . , xn−1][xn].

Example 4 (Direct product). Let I be an index set and Ri be rings for i ∈ I.
Then the direct product is given by∏

i∈I
Ri = {(ri)i∈I |ri ∈ Ri}
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with component-wise operations.

Example 5. The integers with modulo n arithmetic; Z/nZ or Zn.

2 Homomorphisms and Isomorphisms

Let R,S be rings. A homomorphism f : R → S is a function from R to S
preserving the operations, i.e, for all r, r′ in R we have

f(r + r′) = f(r) + f(r′)

f(rr′) = f(r)f(r′)

f(1R) = 1S

Note that f(0) = 0 is forced.
An isomorphism is an homomorphism f which is injective and surjective.

If there exists an isomorphism between R and S we say that R and S are
isomorphic and write R ' S. Note that if f : R→ S is an isomorphism, its set
theoretic inverse f−1 is a homomorphism.

Definition. If f : R→ S is a homomorphism (or “map”) then the kernel of f
is defined as ker f = {r ∈ R|f(r) = 0}.

Examples of kernels and homomorphisms

Example 6. Let R be a ring. Then there exists a unique homomorphism f
from Z to R given as follows: If n > 0 then

f(n) = f(

n times︷ ︸︸ ︷
1 + · · ·+ 1)

= f(1) + · · ·+ f(1)

= 1R + · · ·+ 1R

= n · 1R

Similarly, if n < 0,

f(n) =

|n| times︷ ︸︸ ︷
f(−1R) + · · ·+ f(−1R) = |n| · (−1R).

Example 7. Let R be a ring and choose n elements r1, . . . , rn ∈ R. Then there
exists a unique homomorphism f : Z[x1, . . . , xn]→ R such that f(xi) = ri. For
a polunomial

p(x1, . . . , xn) =
∑
vi>0

mvx
v1
1 · · ·xvnn

where v = (v1, . . . , vn) ∈ Zn and mv ∈ Z, the homomorphism f is given by

f(p(x1, . . . , xn)) =
∑
vi>0

mvr
v1
1 · · · rvnn
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3 Ideals and Quotient Rings

A subset I ⊆ R is said to be an ideal if I is a subgroup under addition and for
all r ∈ R, i ∈ I, we have ri ∈ I.

Example 8. If f : R→ S is a homomorphism, then the kernel of f is an ideal
of R.

Example 9. Suppose {rλ}λ∈Λ ⊆ R. Then the ideal generated by this set,
denoted (rλ), or (rλ)R, is the set of elements of the form∑

λ∈Λ′

sλrλ

where Λ′ ⊆ Λ, |Λ′| <∞, and sλ ∈ R. This is the smallest ideal containing all of
{rλ}λ∈Λ. We say that I is finitely generated if I = (r1, . . . , rn) for some ri ∈ R,
and principal if I = (r) for some r ∈ R.

Example 10 (Direct Sum). The direct sum is an ideal of the direct product (not
necessarily a subring because it might not contain the multiplicative identity)
and is defined as

⊕
Ri = {(ri) ∈

∏
Ri|ri 6= 0 for finitely many i ∈ I} (see

Example 4).

Example 11. An arbitrary intersection of ideals is again an ideal. Note that
the union of ideals is not necessarily an ideal, as it is not even an abelian group,
in general. For example consider 2Z and 3Z in Z.

Example 12. Given two ideals I, J the product is an ideal and IJ = (ij) where
i ∈ I and j ∈ J . Note that in general IJ 6= {ij | i ∈ I, j ∈ J}; however this is
true if one of the two ideals is principal.

Example 13. The sum of two ideals I, J is an ideal and is given by I + J =
{i+ j | i ∈ I, j ∈ J}

Example 14. Given two ideals I, J the colon is the ideal I : J = {r ∈ R | rJ ⊆
I}.

Example 15. If R = Z then every ideal is principal of the form (n) for some
n > 0.

Proof. Let I ⊆ Z be an ideal, I 6= (0). Note that n ∈ I if and only if −n ∈ I.
So without loosing generality, choose n ∈ I least such that n > 0. To show that
I = (n), consider m ∈ I. Then m = qn+ r for 0 6 r < n. But this shows that
r = m− qn which is an element of I. Thus r = 0 and I = (n).

Example 16. Let k be a field, R = k[x]. Then every ideal of R is principal.

Example 17. Let k be a field, R = k[x, y]. If I = (x, y), that is the set of all
f ∈ R such that f(0, 0) = 0, then I is not principal. In fact (x, y)n requires
n+ 1 generators.
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Let I be an ideal in a ring R. Then the quotient ring , denoted R/I, is the
set {r + I|r ∈ R} of additive cosets of I. We make this into a ring by

(r + I) + (s+ I) := (r + s) + I

(r + I) · (s+ I) := rs+ I

We need to show that the product is well defined. First recall that r + I =
{r + i|i ∈ I} and we have r + I = s+ I if and only if there exists i, i′ ∈ I such
that r + i = s+ i′. This is equivalent to r − s ∈ I.

Now suppose r+I = r′+I and s+I = s′+I. We want to show rs+I = r′s′+I,
i.e. rs− r′s′ ∈ I. So notice,

rs− r′s′ = (r − r′)s− r′(s′ − s) ∈ I.

The zero element in R/I is 0+I = I. The multiplicative identity is 1+I. In
general we will write r = r+I. There is a surjective homomorphism π : R→ R/I
defined by π(r) = r with ker(π) = I.

Example 18. Let R = Z. Then by example 15 we know that every ideal I is
principal, say I = (n). Then the map Z → Z/I is just Z → Z/(n) such that
m 7→ m for m ∈ Z.

Example 19. Let I = (x2 + 1) be an ideal in the polynomial ring R[x] for R
the real numbers. Then R[x] maps onto C via

R[x]→ R[x]/(x2 + 1) ' C

Proposition 1 (Isomorphism Theorem). Let f : R → S be a ring homomor-
phism and set I = ker f . Then f factors as a surjection followed by an injection
as in the following commutative diagram:

R

π

��

f // S

R/I

g

>>

In particular, if f is onto, then g is an isomorphism.

Proof. Note if r ∈ R, then we must have (g(r) =) g(π(r)) = f(r) giving the
definition of g. To show g is well defined, suppose r = r′. This implies that
r − r′ ∈ I. Hence f(r − r′) = 0 which gives f(r) = f(r′). So we have that
g(r) = g(r′). The fact that g is a homomorphism is clear. We need to show g is
injective. Suppose that g(r) = g(t). Then f(r) = f(t) which gives f(r− t) = 0.
Thus r − t ∈ I and r = t.

Example 20. Let R be a ring and I an ideal of R. Let IR[x] denote the ideal
in R[x] generated by {i | i ∈ I}. Then

R[x]

IR[x]
'
(
R

I

)
[x]
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Proof. Apply proposition 1 with R := R[x] and S := (R/I)[x]. Define f : R→ S
by f(r0 + r1x+ · · ·+ rnx

n) = r0 + r1x+ · · ·+ rnx
n. This is onto and hence by

the proposition we have established the isomorphism.

Theorem 2. Let I ⊆ R be an ideal.

(1) Every ideal J in R := R/I is of the form J/I where J is an ideal in R
containing I and J/I = {j | j ∈ J}. Moreover, if J is an ideal in R
containing I, then J/I is an ideal in R/I.

(2) If J1, J2 are ideals in R containing I, then J1 = J2 if and only if J1 = J2.
Hence this correspondence is a one-to-one inclusion preserving correspon-
dence between ideals of R/I and ideals in R containing I.

(3) If J ⊇ I are ideals then R/J ' R/J

Proof. Let J ⊆ R be an ideal and define J = π−1(J) under the projection map
π : R → R/I. Since 0 ∈ J , we must have I ⊆ J . It is easy to see that J is an
ideal and J/I = J by definition. Conversely, given an ideal J of R containing
I, it is also easy to see that J/I is an ideal.

To show the second statement, note that if J1 = J2 then we have J1 = J2.
Conversely, suppose J1 = J2 and let ji ∈ J1. Then there exists j2 ∈ J2 such
that j1 = j2. This implies that j1 − j2 ∈ I. But I ⊆ J2 thus we have j1 =
(j1 − j2) + j2 ∈ J2. Hence J1 ⊆ J2. a similar argument shows that J2 ⊆ J1.

For the third statement, use proposition 1 with S = R/J and the composi-
tion f of the surjections

R
π //

f

==
R/I

π // R/J.

Note that the ker(f) = J .

Remark. Suppose I = (f) is a principal ideal in R and g ∈ R = R/I. Suppose
we want to understand what R/(g) looks like. Set J := (g) ⊆ R and let J be
as in the theorem. What is J?

By definition, J = π−1((g)) where π : R → R/(f). To understand the
structure of J , consider an element j ∈ J , i.e. j ∈ (g). Equivalently j has the
property that there exists an r ∈ R such that j = r · g. But this is the same as
saying j − rg ∈ (f), that is for some s ∈ R, j − rg = sf . Thus j = rg + sf .
This forces J = (f, g). Therefore by the third part of theorem 2 we have that
R/(g) ' R/(f, g). By the same token, R/(f, g) ' R̃/(f̃) where R̃ = R/(g).

Example 21. Let i ∈ C, i2 = −1, and Z[i] = {a + bi | a, b ∈ Z}. This ring
is called the Gaussian integers. In order to analyze the quotient ring Z[x]/(5)
consider the unique homomorphism f : Z[x] → Z[i] defined by evaluating at i
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(see example 7). From proposition 1 we have that Z[i] ' Z[x]/(x2 + 1). So by
the above remark we have that

Z[i]

(5)
' Z[x]

(x2 + 1, 5)

' Z[x]/5Z[x]

(x2 + 1)

' (Z/5Z)[x]

(x2 + 1)

' Z5[x]

(x− 2)(x− 3)

4 Prime Ideals

Given a ring R, an ideal I is maximal if there does not exist a proper ideal J
such that I ( J . This is equivalent to R/I being a field. A proper ideal I is
prime if whenever ab ∈ I then a ∈ I or b ∈ I. A ring is called a domain if for
any elements a, b in the ring such that ab = 0 then a = 0 or b = 0. An ideal I in
a ring R is prime if and only if R/I is a domain. Hence we have that maximal
ideals are prime as fields are domains. On the other hand, the converse is not
true, consider the ring Z with ideal (0).

Topology on Spec(R) The set of prime ideals in a ring R is denoted Spec(R).
For an example consider the ring Z. Then Spec(Z) is all the ideals generated
by a prime element and the zero ideal. Another example is k[x], a polynomial
ring over a field. This is a PID so Spec(k[x]) is the set of ideals generated by
an irreducible element and the zero ideal.

In general, if f : R→ S is an homomorphism and Q ∈ Spec(S) then we have
that f−1(Q) is in Spec(R). So we get an induced map f∗ : Spec(S)→ Spec(R).
A special case of this is if I is an ideal in a ring R and π : R → R/I is
the projection map. If π∗ : Spec(R/I) → Spec(R) is the induced map where
Spec(R/I) is the set of ideals in the form P/I, with P a prime ideal in R such
that P ⊇ I, then π∗(P/I) = P .

A topology on Spec(R) can be given by saying a set V ⊆ Spec(R) is closed
if and only if there exists and ideal I in R such that V = {p | p ⊇ I} (denoted
V (I)). Open sets are given by X−V (I) = U where X = Spec(R). This topology
on Spec(R) is called the Zariski topology . Note that under this topology the
induced map f∗ is continuous. A basis of the open sets is {D(r)}r∈R where
D(r) = {p ∈ Spec(R) | r /∈ p}. To see this notice that D(r) = X − V (r) and if
U = X − V (I) then U = ∪r∈ID(r).

For an example, consider the ring Z. Notice that (0) ∈ Spec(Z) but is not
closed. For if {(0)} = V (I) for some ideal I then I = (0) and thus V (I) =
Spec(Z), a contradiction. In fact, the closed points are maximal ideals.

Remark. Suppose thatR is a domain. Then the intersection of any two nonempty
open sets is non-empty, i.e. Spec(R) is irreducible.
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Proof. Let U1, U2 be non-empty open sets, Ui = X − V (Ii), i = 1, 2. Notice
that Ui = ∅ if and only if Ii = (0). This is true since (0) ∈ Spec(R). So
Ii 6= (0) iff (0) + Ii iff (0) ∈ X − V (Ii). Conversely, if p ∈ Ui then p + Ii and
therefore (0) + Ii. This implies that Ii 6= 0. Therefore I1 6= (0), I2 6= (0), and
(0) ∈ U1 ∩ U2 6= ∅.

Nilradical and Jacobson Radical For r ∈ R a ring, we say r is a unit
if there exists an s ∈ R such that rs = 1. Equivalently, (r) = R. Given an
ideal I in a ring R, the nilradical of I (denoted

√
I) is defined as the set of all

elements of the ring R whose powers are in I. An element r of the ring R is
called nilpotent if some power of r is zero. The set of all nilpotent elements can
be given by

√
0 and is denoted Nilrad(R). The Jacobson radical of R, denoted

Jac(R) is the intersection of all maximal ideals in R.

Remark. The radical of I is an ideal and V (
√
I) = V (I).

Proof. If x ∈
√
I, r ∈ R then (xr)n = xnrn ∈ I for all n sufficiently large. If

x, y ∈
√
I, say xn, ym ∈ I then (x+ y)m+n−1 is also in I. Notice that

(x+ y)m+n−1 =

m+n−1∑
i=0

(
m+ n− 1

i

)
xiym+n−1−i

is in I since either i > n or m+ n− 1− i > m.
To see the second part, let p ∈ V (

√
I). Then p ⊇

√
I ⊇ I and thus p ∈ V (I).

Conversely, let p ∈ V (I) and x ∈
√
I. Then xn ∈ I ⊆ p and hence x ∈ p.

Therefore p ⊇
√
I and we have that p ∈ V (

√
I).

Remark. The ring R is said to be reduced if there are no non-zero nilpotent

elements. For example, the ring R/
√
I is always reduced since

√√
I =
√
I.

Lemma 3. If R is a ring and x is non-nilpotent then there exist ideals maximal
with respect to the exclusion of the set S = {xn}∞n=0 and any such ideal is prime.

Proof. Let Σ be the set of ideals of R that do not meet S. Note that Σ is
non-empty since the zero ideal does not meet S. By Zorn’s lemma1, we have
that Σ has at least one maximal element I. Now assume that ab ∈ I and that
a, b /∈ I. Hence we have that the ideals (I, a) and (I, b) have I as a proper subset
and hence neither are elements of Σ. That is, there exists natural numbers n,m
such that xn ∈ (I, a) and xm ∈ (I, b). So for some i1, i2 ∈ I and r, s ∈ R we
have xn = i1 + ra and xn = i2 + sb. The product

xn+m = xnxm = (i1 + ra)(i2 + sb) = i1i2 + i1sb+ i2ra+ abrs

is an element of I, a contradiction. So I is prime.
1Let S be a non-empty partially ordered set (i.e. we are given a relation x 6 y on S which

is reflexive and transitive and such that x 6 y and y 6 x together imply x = y). A subset
T of S is a chain if either x 6 y or y 6 x for every pair of elements x, y in T . Then Zorn’s
Lemma may be stated as follows: if every chain T of S has an upper bound in S (i.e. if there
exists x ∈ S such that t 6 x for all t ∈ T ) then S has at least one maximal element.



8 Rings, Ideals, and Maps

Corollary 4. Every ideal is contained in a maximal ideal

Proof. Apply the lemma 3 to the ring S = R/I and x = 1 + I ∈ S. So there
exists an ideal J/I in S maximal with respect to not containing 1S . I.e. if J/I
is maximal in S then J ⊇ I and J is maximal in R.

Proposition 5. Let R be a ring and I and ideal of R. The following are
equivalent.

(1) x ∈
√
I

(2) For all ring homomorphisms φ : R → k where k is a field, φ(x) ∈ (φ(I)).
That is, the image of x in k is in the ideal generated by the image of I in
k.

(3) x ∈ p for all p ∈ Spec(R) such that p ⊇ I.

In particular,
√
I is the intersection of all prime ideals containing I.

Proof. (1)⇒(2): Assume that x ∈
√
I and let k be a field. Consider a ring

homomorphism φ : R → k. Since (φ(I)) is an ideal of k it is either (1) or (0).
The former case is clear so assume the latter. For all large n, φ(xn) = 0 so that
φ(x)n = 0. But we are in a field, in particular a domain, hence φ(x) = 0. (Note
that we could have restated (2) to say for all ring homomorphism φ : R → k
such that φ(I) = 0, φ(x) = 0.)

(2)⇒(3): Suppose that I ⊆ p for p a prime ideal. Consider the composition

R
π // //

φ

<<
R/p �

� i // κ(p).

where κ(p) is the field of fractions of R/p. Choose x ∈ R as in (2). Notice that
φ(I) = 0 since I ⊆ p. Therefore we have that φ(x) = 0. Since i is an injection,
we have that x+ p = 0 in R/p and thus x ∈ p.

(3)⇒(1): Assume that x /∈
√
I and pass to R/I (assume R = R/I). Thus

we have reduced to the case in which x ∈ p for all p ∈ Spec(R) and x /∈
√

0.
But by lemma 3, since x is not nilpotent, there exists a prime ideal P maximal
with respect to the exclusion of {xn}∞n=0; a contradiction.

Chinese Remainder Theorem

Definition. Two ideals I and J of a ring R are comaximal if I + J = R.

Example 22. If n,m ∈ Z are relatively prime, then (n) and (m) are comaximal.

Example 23. If k is a field, then for any two distinct elements α, β ∈ k, the
elements (x−α) and (x−β) are comaximal in the polynomial ring k[x]. To see
this notice

1 =
1

β − α
(x− α)− 1

β − α
(x− β).

More generally, if m1, m2 are distinct maximal ideals then m1 and m2 are co-
maximal since m1 ( m1 + m2 implies m1 + m2 = R.
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Theorem 6 (Chinese Remainder Theorem). Let R be a ring and I1, . . . , In
ideals. If Ii and Ij are comaximal for all i 6= j, then

(1) R/I1 × · · · ×R/In ' R/I1 ∩ · · · ∩ In

(2) I1 ∩ · · · ∩ In = I1I2 · · · In.

Proof. First do the case n = 2. For simplicity, Let I = I1 and J = I2. By
assumption there exists i ∈ I and j ∈ J such that i+ j = 1. Since IJ ⊆ I ∩J is
always true, consider an element r of I ∩ J . Then ri+ rj = r and IJ ⊇ I ∩ J .
Hence the second part holds.

For the first part, consider a map f : R → R/I × R/J defined by f(r) =
(r+I, r+J). We need to prove that ker(f) = I∩J and f is onto. By proposition
1 these two facts give the desired result. First notice that

f(r) = 0 ⇔ r + I = I, r + J = J

⇔ r ∈ I ∩ J.

Thus ker(f) = I ∩ J . Next let (a + I, b + J) be an element of R/I × R/J and
set r = aj + bi. Then

r + I = a+ I ⇔ r − a ∈ I
⇔ aj + bi− a ∈ I
⇔ a(j − 1) + bi ∈ I
⇔ a(−i) + bi ∈ I.

A similar argument can be made for b and J . Hence f(r) = (a+ I, b+ J).
To complete the proof use induction on n. With out loosing any generality,

assume n > 2. If I1 ∩ · · · ∩ In−1 and In are comaximal, then by the induction

R/I1 × · · · ×R/In−1 ' R/I1 ∩ · · · ∩ In−1

and
I1 ∩ · · · ∩ In−1 = I1I2 · · · In−1.

By the case of n = 2 we may conclude that

R/I1 ∩ · · · ∩ In−1 ×R/In−1 ' R/I1 ∩ · · · ∩ In−1

and
(I1 ∩ · · · ∩ In−1) ∩ In = (I1I2 · · · In−1) · In.

In order to ensure I1 ∩ · · · ∩ In−1 and In are comaximal suppose they are
not and argue by way of contradiction. That is assume I1 ∩ · · · ∩ In−1 and
In are not comaximal. Then (I1 ∩ · · · ∩ In−1) + In is a proper ideal and is
contained in some maximal ideal m. Since I1 · · · In−1 ⊆ I1 ∩ · · · ∩ In−1 we get
that I1 · · · In−1 ⊆ m. Since m is prime there exists 1 6 j 6 n − 1 such that
Ij ⊆ m. But then Ij + In ⊆ m, a contradiction.
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Example 24. Recall from example 21 that

Z[i]

(5)
' (Z/5Z)[x]

(x2 + 1)
' Z5[x]

(x− 2)(x− 3)
.

Here the ideals (x− 2) and (x− 3) are comaximal.

Prime Avoidance

Theorem 7 (Prime Avoidance: Version 1). Let I1, . . . , In be ideals in a ring
R, at most two are not prime. If J is another ideal and J ⊆ ∪ni=1Ii then J ⊆ Ij
for some j.

Proof. First assume n = 2 and that J * I1, J * I2. Choose elements j1 ∈ J−I1,
j2 ∈ J − I2 and consider j = j1 + j2. Since J ⊆ I1 ∪ I2 we have j1 ∈ I2 and
j2 ∈ I1. But j ∈ J . So with out lose of generality, assume j ∈ I1. Then
j1 = j − j2 ∈ I1, a contradiction.

By induction on n, we will prove the general case. Let n > 2 and choose I1
to be prime. Assume that J * Ij for all j = 1, . . . , n. By the induction, for all
1 6 j 6 n, J * ∪l 6=jIl, so choose aj ∈ J − ∪l 6=jIl (note aj ∈ Ij). Now consider

a = a1 + a2a3 · · · an ∈
n⋃
j=1

Ij .

Suppose that a ∈ Ij for some j > 2. Since aj ∈ Ij , a2a3 · · · an ∈ Ij . Hence
a1 = a− a2a3 · · · an ∈ Ij , a contradiction.

If a ∈ I1, then a2a3 · · · an = a − a1 ∈ I1. Since I1 is prime, there exists an
l such that 2 6 l 6 n where al ∈ I1, another contradiction. Therefore a ∈ J is
not contained in any Ij . In other words, J * ∪nj=1Ij .

Theorem 8 (Prime Avoidance: Version 2). Let R be a ring and p1, . . . , pn be
prime ideals of R. Suppose x ∈ R, I is an ideal of R, and

{rx+ i | r ∈ R, i ∈ I} = (x) + I * pj

for 1 6 j 6 n. Then there exists an i ∈ I such that x+ i /∈ p1 ∪ · · · ∪ pn.

Proof. We can assume pj 6⊆ pk for j 6= k. Assume by way of contradiction
that the coset x + I ⊆ p1 ∪ · · · ∪ pn and fix v such that x ∈ p1 ∩ · · · ∩ pv,
x /∈ pv+1 ∪ · · · ∪ pn. We know by version 1 that I * p1 ∪ · · · ∪ pv. If so, I ⊆ pk
for some k 6 v and therefore (x) + I ⊆ pk, a contradiction.

Choose i0 ∈ I r (p1 ∪ · · · ∪ pv) and r ∈ (pv+1 ∩ · · · ∩ pn) r (p1 ∪ · · · ∪ pv)
(This is possible since pv+1 ∩ · · · ∩ pn * pi, 1 6 i 6 v). Then x + ri0 ∈ x + I
and x+ ri0 /∈ p1 ∪ · · · ∪ pn.

Example 25. Let R = Z2[x, y]/(x, y)2. Then (x, y)R ⊆ xR ∪ yR ∪ (x + y)R
but (x, y)R is not contained in any of them.
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Proof. Every element in (x, y)R can be represented by an element of the form
αx + βy + (x, y)2 where α, β ∈ Z2. Thus there are only 4 elements in (x, y)R;
namely x+ y, x, y, and 0.

Example 26. Let k be a field and R = k[x] a polynomial ring in one variable.
For an irreducible polynomial f(x), p = (f(x)) is prime and

√
(fn(x)) = p.

Example 27. Consider the integers Z. For n > 0,
√

(n) =
⋂

(p)⊇(n)(p) =⋂
p|n(p) =

∏
p|n(p). (Chinese remainder theorem)

Example 28. Let k be a field and R = k[x] be a polynomial ring in one variable.
Consider the ideal I = (x2, xy, y2) of R. Then

√
I = (x, y).

Example 29. Let R = k[a, b, c, d] be a polynomial ring over in four variables
over the field k. Consider the matrix

A =

(
a b
c d

) (
A2 =

(
a2 + bc ab+ bd
ac+ cd bc+ d2

))
.

Let I = (a2 + bc, ab+ bd, ac+ cd, bc+ d2). Then
√
I = (det(A), trace(A)).

Proof. We will first show that (det(A), trace(A)) ⊆
√
I. By proposition 5 it

is enough to show that if homomorphism φ : R → k such that φ(I) = 0 then
φ(det(A)) = φ(trace(A)) = 0. Apply φ to the matrix A and let α, β, γ, δ be the
images of a, b, c, d respectively. Further let M = φ(A). Since φ(I) = 0 we have
that M2 = 0. The characteristic polynomial is T 2 − trace(M)T + det(M) · I.
So mM (T ) = T 2 and therefore Cm(T ) is also T 2. This implies that trace(M) =
det(M) = 0. So trace(M) = φ(trace(A)), det(M) = φ(det(A)).

To see the reverse inclusion, it is enough to show I ⊆ (trace(A),det(A)) and
(trace(A),det(A)) is prime.

Example 30.

(1) (General set up) Let R = k[x1, . . . , xn], S = k[t1, . . . , tn] be polynomial
rings over the field k. In general, a homomorphism φ can be defined
from R to S by sending xi to fi(t1, . . . , tm) in S. This extends to a
surjective homomorphism φ′ from R to k[f1, . . . , fn] via φ(g(x1, . . . , xn)) =
g(f1, . . . , fn). Notice that k[f1, . . . , fn] is a subring of S. So the kernel of
φ′ is a prime ideal in R. I.e. ker(φ) = {g(x1, . . . , xn) | g(f1, . . . , fn) = 0}.

(2) Let φ : k[x, y] → k[t] defined by x 7→ t2 and y 7→ t3. The kernel of φ is
{g(x, y) | g(t2, t3) = 0}. This is a prime ideal, say ker(φ) = p. Notice
x3 − y2 ∈ kerφ.

Claim. ker(φ) = (x3 − y2)
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Let R′ = k[x, y]/(x3 − y2). Since (x3 − y2) ⊆ p we have an induced
homomorphism φ′ : R′ → k[t2, t3]. Consider the commutative diagram

k[x, y]/(x3 − y2)
φ′ //

''

k[t2, t3]

k[x, y]/p

f

99

where f is an isomorphism by proposition 1. Since (x3 − y2) ⊆ p, φ′ is
surjective.

Remark. If φ : V → W is a homomorphism of vector spaces, and {vi}
span V and if {φ(vi)} are a basis for W , then φ is an isomorphism.

Proof. Clearly φ is onto since {φ(vi)} are a basis. If φ(
∑
αivi) = 0 then∑

αiφ(vi) = 0 and thus αi = 0 for all i. That is, φ is one-to-one.

Given the remark, consider the vector space basis for R′ and S. Notice
that

S = k + kt2 + kt3 + kt4 + kt5 + · · ·

and k[x, y] has a k-basis {xiyj}i,j>0. In R′, {xiyj}i,j>0 are a generat-
ing set. Since x3 = y2 we can refine this generating set to {xi, xiy}i>0.
Note that φ′(xi) = t2i and φ′(xiy) = t2i+3 for i > 0. So under φ′,
{φ′(xi), φ′(xiy)} is a k-basis of S. So the above remark shows φ′ is an
isomorphism. In particular, ker(φ′) = 0 + (x3 − y2) and thus ker(φ) =
(x3 − y2).

(3) Consider the map φ from k[x, y, z] to S = k[t3, t4, t5] defined by x 7→ t3,
y 7→ t4, and z 7→ t5. We have that φ is onto, but what is the kernel?
Notice that the expressions y2 − xz, x3 − yz, z2 − x2y ∈ ker(φ).

Claim. The ideal I = (y2 − xz, x3 − yz, z2 − x2y) is the kernel of φ.

Let R = k[x, y, z]/I. A k-basis for S is {ti}i>3,i=0. A k-generating set of
R is {xiyjzk}i,j,k>0. But we can refine this to {xi, xiy, xiz}i>0. Apply φ
to get the set

{φ(xi) = t3i, φ(xiy) = t3i+4, φ(xiz) = t3i+5}.

This is a k-basis of S. So φ is an isomorphism and I = ker(φ).

(4) In general, if a, b, c ∈ Z+ such that (a, b, c) = 1 then if we map k[x, y, z]
into k[ta, tb, tc] via the map φ, then the kernel of φ is always (minimally)
generated by the 2 or 3 elements which are exactly the least powers of
x, y, z expressible as a product of the other two.
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Going back to k[t3, t4, t5], notice that the three generators of the kernel of
φ are excactly the 2× 2 minors of(

x y z
y x2 z

)
up to sign.

5 Unique Factorization Domains

Definition. A (non-zero) non-unit r ∈ R is said to be irreducible if r 6= ab
where a and b are non-units. (Note that if u is a unit, r = u(u−1r).)

Remark. In a domain R, a non-unit r is irreducible if and only if (r) is maximal
among principal (proper) ideals.

Proof. Suppose r is irreducible and (r) ⊆ (s). Hence s divides r and there exists
a t in R such that st = r. But then either t is a unit and (r) = (s), or s is a
unit and (s) = R.

Conversely, if (r) is maximal among proper principal ideals and r = ab, then
since (r) ⊆ (a) either (a) = R (a is a unit) or (r) = (a). In the latter case,
r divides a as well. So, rs = a for some s in R and thus rsb = r. Therefore
r(1− sb) = 0. Since R is a domain and r 6= 0, then 1 = sb.

Definition. A ring R is a unique factorization domain (UFD, factorial in
french) if R is a domain and

(1) For all irreducible elements r ∈ R, (r) is prime, and

(2) Any non-zero, non-unit r is a product of Irreducible elements.

Theorem 9. Let R be an UFD. Then every element r ∈ R which is non-zero
and not a unit is uniquely a product

r = an1
1 an2

2 · · · a
nk

k

where a1, a2, . . . , ak are irreducible elements, and (ai) 6= (aj) for i 6= j up to
rearrangements and units.

Proof. First show uniqueness: Suppose

r = an1
1 · · · a

nk

k = bm1
1 · · · bml

l

bi irreducible, (bi) 6= (bj) for i 6= j. By induction, it suffices to prove (bi) = (aj)
for some i, j. Then bi = aju for some u a unit. We cancel bi and aj up to units
and the induction follows.

But

b1 | an1
1 an2

2 · · · a
nk

k
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so,
an1

1 an2
2 · · · a

nk

k ∈ (b1).

But (b1) is prime, so there exists and i, 1 6 i 6 k such that ai ∈ (b1). This
implies (ai) ⊆ (b1). But ai is irreducible and thus (ai) = (b1) by remark 5.

What is left is to prove existence: This is given by part (2) of the definition
of UFD.

Definition. An element e ∈ R is idempotent if e2 = e.

Remark (See Atiyah, p. 20). For an idempotent e in R, 1 = e + (1 − e), and
e2 = e if and only if e(1− e) = 0. Further,

R ' Re×R(1− e)

where Re has identity e and R(1− e) has identity (1− e).

Definition. A domain R is a principal ideal domain (PID) if every ideal is
principal.

Example 31. Z, k[x], k a field.

Theorem 10. If a ring R is a PID then it is also a UFD.

To prove this theorem, we need to prove the following

(A) If a is irreducible then (a) is prime.

(B) Every element factors into irreducible factors.

But first some lemmas.

Lemma 11. If R is a PID, then every ascending chain of ideals stabilizes.
(Such a ring is said to be Noetherian.)

Proof. Suppose
I1 ( I2 ( · · · ( Ii ( · · ·

is an infinite ascending chain. We can write Ii = (ai). Let

I =

∞⋃
i=1

Ii.

This is an ideal. Therefore there exists a ∈ R such that (a) = I. But then there
exists an i such that a ∈ Ii. Then for all j > i

(ai) ( (aj) ⊆ I = (a) ⊆ (ai),

a contradiction.

Lemma 12. Let R be a PID. The following are equivalent:

(1) The element a is irreducible.
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(2) The ideal (a) is maximal.

Proof. This is clear from remark 5.

Now we are ready to prove the theorem.

Proof of Theorem 10. (A) is a consequence of lemma 12, since maximal ideals
are prime. For (B) let a ∈ R, a is non-unit, non-zero. There exits a maximal
ideal m containing a. Since R is a PID, m = (a1), a1 is irreducible by lemma
12. So, a = a1b1. If b1 is a unit, done. If not, (a) ( (b1). Repeat with b1 in
place of a.

There exists an irreducible a2 such that b1 = a2b2. Therefore

(a) ( (b1) ( (b2)

If b2 is a unit then a = a1a2b2. If not, continue. By lemma 11, this chain stops
and we have our factorization.



Chapter 2

Modules

1 Notation and Examples

For a commutative ring R, an abelian group (M,+) is an R-module if there
exists a map R × M → M defined by (r,m) 7→ rm satisfying the following
properties for all r, s ∈ R and m,n ∈M :

(i) 1 ·m = m

(ii) (r + s)m = rm+ sm

(iii) r(m+ n) = rm+ rn

(iv) (rs)m = r(sm)

Example 32. Let R = Z. A Z-module is an abelian group.

Proof. Let M be a Z-module and n ∈ Z, m ∈ M . Property (ii) and (iv) force
that

n ·m =



n−times︷ ︸︸ ︷
m+ · · ·+m if n > 0

0 if n = 0
(−m) + · · ·+ (−m)︸ ︷︷ ︸

|n|−times

if n < 0

This action forces (i) and (iii) to hold.

Example 33. If R = k a field, then modules are exactly vector spaces over k.

Example 34. If f : R→ S is a ring homomorphism, then

(a) S is an R-module;

(b) any S-module is an R-module.

In particular, R is a module over itself with respect to the usual multiplication.
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Proof. For (a), if r ∈ R and s ∈ S, define rs = f(r)s. Similarly for (b), if r ∈ R
and m ∈ M , for M an S-module, define r ·m = f(r)m. The R-module M is
said to be obtained from the S-module M by restriction of scalars.

Example 35. Let k be a field and R = k[t] a polynomial ring with indetermi-
nate t. Let V be an R-module. By examples 33 and 34, V is a vector space
over k. But this vector space comes with an action of t on V . That is,

t : V → V

v 7→ t · v.

Note by example 33, for any v1, v2 ∈ V ,

t(v1 + v2) = tv1 + tv2.

By example 34, if α ∈ k and v ∈ V ,

t(αv) = (tα)v = α(tv).

Therefore, t is an endomorphism from V to V ; i.e. a linear transformation.
The definition of a module force that if p(t) = α0 + α1t+ ·+ αnt

n, then

p(t) · v = α0v + α1(tv) + ·+ αn(tnv).

The converse also holds: given a vector space V and a linear transformation
T : V → V we can make V into a k[t]-module by tv = T (v) for all v ∈ V .

Example 36. If R = k[t1, . . . , tn] is a polynomial ring over a field with n
variables, then an R-module M is a vector space V with n linear transformations
T1, . . . , Tn which commute.

Example 37. Suppose {Mi} are R-modules. We define the direct sum of a
module as⊕

i

Mi = {(mi) | mi ∈Mi, all but finitely many mi = 0}.

This is an R-module. The direct product is defined as∏
i

Mi = {(mi) | mi ∈Mi}.

When the index set is finite, the notions of direct sum and direct product coin-
cide.

2 Submodules and Maps

Definition. If M,N are R-modules, then an R-homomorphism φ : M → N is
an homomorphism of abelian groups such that φ(rm) = rφ(m) for all r ∈ R.
An R-homomorphism is an isomorphism if it is surjective and injective. As
with rings, the kernel of an R-homomorphism is the set of all elements that get
mapped to zero.
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Example 38. Let M,N be R-modules. Define HomR(M,N) to be the set of
R-homomorphisms from M to N . This becomes an R-module with addition
and multiplication defined as follows: for any f, g in HomR(M,N), r ∈ R,

(f + g)(m) := f(m) + g(m)

(r · f)(m) := rf(m)

Note. If k is a field, V ' kn, Homk(V, V ) ' Mn(k) where Mn(k) is the set of
n× n matrices with elements from k.

Definition. An R-module F is a free module if F '
⊕

iRi where Ri ' R. In
other words, F is free if it has a basis.

Example 39. Every vector space V over a field k is free. Choose a basis {vi}
of V . Then V '

⊕
i kvi, kvi ' k.

Definition. Suppose that M is an R-module. We say that {xi}i∈I , xi ∈ M ,
generate M if for all x ∈M there exists an equality (not necessarily unique)

x =
∑
i

rixi

such that ri ∈ R and all but finitely many ri are zero. The R-module M is said
to be finitely generated if I is a finite set. I.e., there exists x1, . . . , xk ∈M such
that M = {r1x1 + · · ·+ rkxk | ri ∈ R} = Rx1 + · · ·+Rxk = 〈x1, . . . , xk〉.

Remark. Let M be an R-module with a generating set {xi}i∈I . In this case, let
F '

⊕
iRi where Ri ' R. Consider the elements ei = (0, 0, . . . , 1, 0, . . .) ∈ F ,

where the one is is the ith position. There exists a homomorphism F → M
defined by ei 7→ xi. Thus

(r1, r2, . . .) 7→
∑
i

rixi ∈M.

This is a surjective map and well defined since F is free.

Submodules and Quotient Modules If M is an R-module, a submodule
N of M is a subgroup N ⊆ M such that the restricted operations make N an
R-module. If N is a submodule of M , we can define a quotient module, denoted
M/N as follows: the group structure is as a quotient group and r(m + N) =
rm+N . For instance, if M = R, then the submodules are exactly the ideals.

Example 40. Kernels and images of homomorphisms are submodules of their
respective modules, e.g. if N ⊆ M , the natural projection π : M → M/N
defined by x 7→ x+N is an homomorphism with ker(π) = N and im(π) = M/N .

The next three theorems are generalized versions of proposition 1 and theo-
rem 2. They are stated without proof.
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Theorem 13 (Isomorphism Theorem). Let R be a ring and f : M → N an
R-homomorphism. Set K = ker(f). Then f factors as a surjection followed by
an injection as in the following commutative diagram:

M

π

��

f // N

M/K

g

<<

In particular, if f is onto, then g is an isomorphism.

Theorem 14. Let R be a ring and N ⊆ M be R-modules. Then there exists
a one-to-one inclusion preserving correspondence between submodules of M/N
and submodules of K ⊆M such that N ⊆ K:

K ←→ K/N.

Theorem 15. Let N ⊆ K ⊆ M be R-modules. Define M := M/N and K :=
K/N ⊆M . Then

M/K 'M/K.

Definition. If N,K ⊆M are R-submodules and I ⊆ R, then we define

IM =

∑
j

ijmj | ij ∈ I,mj ∈M

 ⊆M
N +K = {n+ k | n ∈ N, k ∈ K}

Remark. The objects IM and N + K in definition 2 are submodules of the
R-module M . Further, N + K is the smallest submodule of M containing N
and K.

Theorem 16 (Diamond Isomorphism). If N,K ⊆ M are R-submodules, then
there is an isomorphism theorem:

N +K

N
' K

K ∩N
.

Proof. Let f be the composition map from K to N +K/N

K
� � //

f

99
N +K

π // N +K/N

defined by k 7→ k + N . Notice that f is surjective and by theorem 13 we have
that

K/ ker(f) ' N +K/N.
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Finally

ker(f) = {k ∈ K : f(k) = 0} = {k ∈ K : k +N = N} = K ∩N.

Lemma 17. Let R be a ring and M an R-module. Then HomR(R,M) 'M .

Proof. Define a homomorphism Φ : HomR(R,M)→M by Φ(φ) = φ(1). Check
that Φ is an isomorphism.

Remark. From the lemma we know that HomZ(Z,Q) ' Q. Let φ ∈ HomZ(Q,Z)
be a non-zero Z-homomorphism, so that there exists α ∈ Q such that φ(α) 6= 0.
Without loosing generality, say φ(α) = n, with n > 0. So,

n = φ(α) = φ(m · 1

m
· α) = m · φ(

1

m
α) ∈ Z.

Since m is arbitrary, we have arrived at a contradiction. Hence HomZ(Q,Z) = 0.

3 Tensor Products

Definition. Let M,N,P be R-modules. An R-bilinear map f : M × N → P
defined by (m,n) 7→ f(m,n) is a map such that

(i) If we fix x ∈ M and then define fx : N → P by x 7→ f(x, n), then fx is
an R-module homomorphism.

(ii) Similarly, fixing y ∈ N and defining fy : N → P by m 7→ f(m, y) is an
R-module homomorphism.

Theorem 18. Given R-modules M,N , there exists an R-module T and a bi-
linear map g : M ×N → T such that

(i) Given any other R-module P and bilinear map f : M × N → P , there
exists a unique R-module homomorphism α : T → P such that

M ×N
g //

f
##

T

α
��

P

is a commutative diagram.

(ii) Further, T and g are unique in the following sense: If T ′, g′ is another
pair satisfying (i), then there exists an isomorphism i such that

M ×N
g //

g′ ##

T

i��
T ′

is a commutative diagram as well.
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Definition. The R-module T in the above theorem is called the tensor product
of M and N (over R) and is written T = M ⊗R N .

Proof. For (i), let F be a free module
⊕
R(m,n) with m ∈ M , n ∈ N and

R(m,n) ' R. Denote the element with a 1 in the (m,n)th slot and 0 elsewhere
by [m,n]. Hence F =

⊕
R[m,n].

Let C be the R-submodule of F generated by all elements of the following
form: mi ∈M , ni ∈ N , r ∈ R.

(1) [m1 +m2, n]− [m1, n]− [m2, n]

(2) [rm, n]− r[m,n]

(3) [m,n1 + n2]− [m,n1]− [m,n2]

(4) [m, rn]− r[m,n]

Set T = F/C and define the map g : M ×N → T by (m,n) 7→ [m,n] + C. g is
clearly bilinear. Define [m,n] + C by m ⊗ n. Now let P be an R-module and
f : M ×N → P be a bilinear map.

M ×N
g //

f
##

T

P

Note that T is generated as an R-module by elements m⊗n since F is generated
as an R-module by [m,n].

A typical element in T looks like
∑
imi ⊗ ni, not m ⊗ n. (ri(mi ⊗ ni) =�

rimi ⊗ ni = m′i ⊗ ni)
We have no choice for α: α(m ⊗ n) = f(m,n) is forced, and then to make

this a homomorphism, we must set α(
∑
mi ⊗ ni) =

∑
f(mi, ni). To see α is

well-defined, first observe the map F
Φ→ P : [m,n] 7→ f(m,n) gives an R-module

homomorphism. To see α is well-defined, it suffices to prove Φ(C) = 0. Then Φ
induces a well-defined homomorphism

T/C → P : t+ C 7→ Φ(t) (m⊗ n 7→ f(m,n)).

It’s enough to prove Φ sends the specified generators of C to zero, and it does.
For (ii), if T , g and T ′, g′ are two such tensor products, then by

M ×N
g //

g′ ##

T

∃! α

��
T ′ β

LL

it is easy to check α ◦ β = 1T ′ and β ◦ α = 1T .
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Example 41. Let F and L be two field extensions of a field K, and let FL be
their compositum, so that we have a diagram of fields

FL

F L

K

There exists a K-bilinear map from F × L → FL and therefore there exists a
K-homomorphism F ⊗K L→ FL. This is an isomorphism if and only if one of
the two equivalent conditions hold.

(1) Every set {xi} of elements in F which are linearly independent over K are
linearly independent over L.

(2) Every set {yj} of elements in L which are linearly independent over K are
linearly independent over F .

Exact Sequences

Definition. A sequence of modules and homomorphisms

· · · // Mi1

φi+1 // Mi
φi // Mi−1

// · · ·

is said to be exact if for all i, ker(φi) = im(φi+1). It is said to be a complex if
im(φi+1) ⊆ ker(φi), equivalently, φi ◦ φi+1 = 0. A short exact sequence (s.e.s.)
is a sequence

0 // A
α // B

β // C // 0

which is exact. This means

(1) α is injective, i.e. ker(α) = 0.

(2) β is surjective, i.e. im(β) = C.

(3) ker(β) = im(α)

Example 42. Given R-modules N ⊆M ,

0 // N
i // M

π // M/N // 0

is a s.e.s.

Proposition 19. Let R be a ring and M,N,Q,Mi, Ni be R-modules. Also let
I be an ideal in R.
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(1) M ⊗N ' N ⊗M

(2) (M ⊗N)⊗Q 'M ⊗ (N ⊗Q)

(3) R/I ⊗M 'M/IM

(4) (
⊕

iMi)⊗N '
⊕

i (Mi ⊗N)

(5) If K is a field, V , W vector spaces, {vi} a basis of V and {wj} a basis of
W , then {vi ⊗ wj} are a basis of V ⊗K W . In particular,

dimK(V ⊗K W ) = (dimK V )(dimKW ).

(6) If IM = IN = 0, then M and N are R/I modules and M ⊗R/I N '
M ⊗R N .

(7) IF φ : M → N is a homomorphism, then there exists an induced homo-
morphism φ⊗ 1 : M ⊗Q→ N ⊗Q by (φ⊗ 1)(m⊗ q) = φ(m)⊗ q.

(8) If M1
α−→M2

β−→M3 −→ 0 is exact, then

M1 ⊗N
α⊗1 // M2 ⊗N

β⊗1 // M3 ⊗N // 0

is exact (right exactness).

(9) Hom,
⊗

adjointness

HomR(M ⊗R N,Q) ' HomR(M,HomR(N,Q))

Proof. (1) Notice the bilinear map M × N → T is exactly the same as the
bilinear map N ×M → T by “flipping”. So both M ⊗N and N ⊗M solve the
same universal problem. M ⊗N ' N ⊗M where m⊗ n 7→ n⊗m.

(2) Exercise.
(3) We will show that M/IM has the correct universal property. Denote

cosets in R/I by and define the map R/I ×M → M/IM by (r,m) 7→ rm.
This is well-defined: r = s ⇔ r − s ∈ I ⇒ (r − s)m ∈ IM ⇒ rm = sm in
M/IM .

It is bilinear, e.g. (r + s,m) 7→ (r + s)m = rm+ sm.
Does there exist a unique R-module homomorphism h such that

R/I ×M //

g
##

M/IM

h

||
Q

commutes? Define α : M → Q by α(m) = g(1,m). This is a R-module
homomorphism by the bilinearity of g.
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Remark. In general, if h : M → N is an R-module homomorphism and if
I · h(M) = 0, for I an ideal in R, then there exists an induced homomorphism
h such that the following diagram commutes.

M
h //

π ##

N

M/IM
h

;;

Claim. I · α(M) = 0

To see this, let m ∈M and α(m) = g(1,m). For i ∈ I,

i · α(m) = i · g(1,m) = g(i · 1,m) = g(i,m) = g(0,m) = 0.

Hence there exists an induced R-module homomorphism α : M/IM → Q.
Further we have that

g(r,m) = r · g(1,m) = r · α(m) = r · α(m) = α(rm).

So the diagram commutes for any bilinear map g, that is, M/IM ' R/I⊗RM .
(4) Exercise.
(5) Note, in general, that using (4) and induction, if F is the free module∑
Rvi and G =

∑
Rwi then F ⊗R G =

∑
i,j R(vi ⊗wj). Using (3) with I = 0,

we see that R⊗R N ' N . e.g.

R2 ⊗R2 = (R⊕R)⊗R2 '
(
R⊗R2

)
⊕
(
R⊗R2

)
' R2 ⊕R2 ' R4.

Now apply this to vector spaces which are free k-modules to get (5).
(6) Exercise.
(7) Exercise.
(8) As an R-module, M3 ⊗R N is generated by “decomposable” tensors,

m⊗n, m ∈M3, n ∈ N . But there exists an x ∈M2 such that β(x) = m and so
(β⊗1)(x⊗n) = m⊗n and thus β⊗1 is onto. Note that ker(β⊗1) ⊇ im(α⊗1).
For let x ∈M1, n ∈ N ;

(β ⊗ 1)((α⊗ 1)(x⊗ n)) = βα(x)⊗ n = 0⊗ n = 0.

Therefore, there exists an induced map

M2 ⊗N
im(α⊗ 1)

β⊗1−→M3 ⊗N −→ 0.

It is enough to show β ⊗ 1 is an isomorphism. We will construct h : M3 ⊗N →
M2 ⊗ N/im(α ⊗ 1) such that (β ⊗ 1) ◦ h = h ◦ (β ⊗ 1) = id. Consider the
R-bilinear map

g : M3 ×N −→
M2 ⊗N

im(α⊗ 1)
.
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Let x ∈M3, n ∈ N and define g(x, n) = y ⊗ n in M2 ⊗N where β(y) = x. We
want to prove that g is well defined, i.e. if β(y) = x = β(z), then for n ∈ N

y ⊗ n+ im(α⊗ 1) = z ⊗ n+ im(α⊗ 1).

This can be restated as (y − z) ⊗ n = y ⊗ n − z ⊗ n ∈ im(α ⊗ 1). However
β(y − z) = β(y) − β(z) = x − x = 0. So there exists u ∈ M1 such that
α(u) = y − z. Then (y − z)⊗ n = α(u)⊗ n = (α⊗ 1)(u⊗ n) ∈ im(α⊗ 1), and
therefore g is well defined. Then g induces a R-homomorphism

h : M3 ⊗N // M2 ⊗N
im(α⊗ 1)

x⊗ n � // g(x, n)

Now let x ∈ M3, n ∈ N . If we compute (β ⊗ 1)(h(x ⊗ n)) where β(y) = x, we
have

(β ⊗ 1)(h(x⊗ n)) = (β ⊗ 1)(y ⊗ n)

= β(y)⊗ n
= x⊗ n,

so that (β ⊗ 1)h = id. Conversely

h((β ⊗ 1)(y ⊗ n)) = h(β(y)⊗ n)

= y ⊗ n,

and therefore β ⊗ 1 is an isomorphism, that is im(α ⊗ 1) = ker(β ⊗ 1) and the
sequence is exact.

Example 43. For x ∈ R, x is said to be a non-zero divisor if the map from R
to R defined by r 7→ rx is one-to-one. (i.e. rx = 0 ⇒ r = 0) Let x ∈ R be a
non-zero divisor. Then

0 −→ R
x−→ R −→ R/Rx −→ 0

is an exact sequence. Now let M be an R-module. So

R⊗RM
x // R⊗RM // R/xR⊗RM // 0,

that is
M

x // M // M/xM // 0,

is exact. Notice that if x is also a non-zerodivisor on M , then

0 // M
x // M // M/xM // 0

is also exact.
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Remark. The map M
x→M being one-to-one is equivalent to x being a non-zero

divisor of M . In fact, explicitly, this means xm = 0 ⇒ m = 0 for m ∈ M . For
example, if M = R/Rx then

R/xR
x // R/xR

is the zero map, hence not one-to-one.

Remark. Since M⊗N ' N⊗M , HomR(M⊗N,Q) ' HomR(N,HomR(M,Q)).

(9) Homomorphisms from M⊗N to Q correspond to bilinear maps from M×N
to Q. A bilinear map from M×N to Q is a linear map from M to HomR(N,Q).
That is exactly an element of HomR(M,HomR(N,Q)).

4 Operations on Modules

Definition. In analogy with the colon operation defined for ideals, given an
ideal I ⊆ R and R-modules N ⊆M we define the R-submodule

N :M I = {m ∈M : mI ⊆ N} ⊆M.

Similarly, given N,L ⊆M two R-submodules we can define the ideal

N :R L = {r ∈ R : rL ⊆ N} ⊆ R.

In particular, if N = 0 ⊆M and L = M we define the annihilator of M as

ann(M) = 0 :R M = {r ∈ R : rM = 0} ⊆ R.

Definition. If M is an R-module, M is said to be flat if whenever

0 −→ N1
α−→ N2

β−→ N3 −→ 0

is a short exact sequence of R-modules, then

0 −→ N1 ⊗M
α⊗1−→ N2 ⊗M

β⊗1−→ N3 ⊗M −→ 0

is also exact; equivalently, α⊗1 is one-to-one. If f : A→ B is a homomorphism
of rings, we say f is flat homomorphism if B is a is a flat A-module (B is an
A-module via f : a · b = f(a) · b).

Example 44. Any free module is flat.

Remark. M is finitely generated if and only if there exists a free module Rk

mapping onto M.

Proof. If M is finitely generated and Rk
φ−→ M −→ 0, φ(ei) = xi, then ker(φ)

is a submodule of Rk and ker(φ) = {(r1, . . . , rk) ∈ Rk |
∑
i rixi = 0} where

0 −→ ker(φ) −→ Rk
φ−→M −→ 0.
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Note. Elements in the kernel of φ are called syzygies.

Theorem 20 (Nakayama’s Lemma, NAK). Let R be a ring, I ⊆ R and M
a finitely generated R-module. If IM = M , then there exists x ∈ I such that
(1 + x)M = 0.

Remark. If there exists an x ∈ I such that (1 + x)M = 0 then for all u ∈ M ,
u = −xu ∈ IM . So M = IM .

Proof. Let M = 〈m1 . . .mk〉. For each 1 6 i 6 k, we can write

mi =
∑
j

xijuj uj ∈M,xij ∈ I.

But since M is finitely generated, we have uj =
∑
l rjlml where rjl ∈ R. There-

fore,

mi =
∑
j

xijuj

=
∑
j

xij

(∑
l

rjlml

)

=
∑
l

∑
j

xijrjl

ml

=
∑
l

yilml

= yi1m1 + · · ·+ yikmk

where yil =
∑
j xijrjl. Thus we have a system of linear equations

−y11 + 1 −y12 · · · −y1k

−y21 −y22 + 1 · · · −y2k

...
...

. . .
...

−yk1 −yk2 · · · −ykk + 1




m1

m2

...
mk

 =


0
0
...
0

 .

Recall that for a square matrix A, adj(A) · A = det(A) · I where I is the
identity matrix. Let A be the above matrix composed of the yik’s. Hence

adj(A) ·A

 m1

...
mk

 =

 0
...
0


or, by the recollection, det(A) 0

. . .

0 det(A)


 m1

...
mk

 =

 0
...
0

 .
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Thus for 1 6 i 6 k we have det(A) ·mi = 0. This forces det(A) ·M = 0. Now
modulo I the matrix A is the identity matrix. Hence det(A) ≡ 1 (mod I), i.e.
there exists an x ∈ I such that det(A) = 1 + x.

Corollary 21. If I ⊆ jac(R) and M is finitely generated with IM = M , then
M = 0.

Proof. By NAK, there exists an x ∈ I such that (1 + x)M = 0. So it is enough
to show that 1 + x is a unit. This is true if and only if 1 + x is not in any

maximal ideal. But x ∈
⋂

m, m maximal, implies 1 + x is not in any maximal

ideal.

Corollary 22. Suppose that I ⊆ jac(R). Assume M is an R-module, N ⊆ M
and M/N is finitely generated. If M = N + IM then M = N .

Proof. Notice that I(M/N) = M/N . Let u ∈ M and consider u + N ∈ M/N .
Write u = n + y for n ∈ N and y ∈ IM where y =

∑
aiyi. Then u + N =

y+N =
∑
ai(yi+N) ∈ I(M/N). Apply NAK to M/N , using the first corollary

we get that M/N = 0.



Chapter 3

Localization

1 Notation and Examples

A subset W ⊆ R is said to me multiplicatively closed if 1 ∈W and for any two
elements w1, w2 ∈W , w1w2 ∈W . Two main examples of this are as follows.

Example 45. If x ∈ R, not nilpotent, then W = {xn}∞n=0 is multiplicatively
closed.

Example 46. If p ∈ SpecR the W = R r p is a multiplicatively closed set. In
particular, if R is a domain, then W = Rr{0} is multiplicatively closed as well.

The idea in this chapter is to construct a ring in which all elements of W
become units, i.e., solving the following universal problem: If g : R → S is a
ring homomorphism such that g(w) are units in S for all w ∈W , then there is a
unique ring L, and a unique homomorphism h such that the following diagram
commutes.

R //

g
��

L

h��
S

Construction For a ring R, M an R-module and W a multiplicatively closed
set, consider elements in the set R×W (respectively M×W ). Put an equivalence
relation ∼ on R ×W by: (r1, w1) ∼ (r2, w2) if and only if there exists a w ∈
W such that (r1w2 − r2w1)w = 0. This does define an equivalence relation:
Reflexivity and symmetry are clear. For transitivity, let (r1, w1) ∼ (r2, w2) and
(r2, w2) ∼ (r3, w3). Hence there exists a w,w′ ∈W such that (r1w2−r2w1)w = 0
and (r2w3−r3w2)w′ = 0. Notice that ww′[w3(r1w2−r2w1)+w1(r2w3−r3w2)] =
0. Simplifying we find (r1w3 − r3w1)w2ww

′ = 0.
We denote the equivalence class or (r, w) by r

w or w−1r ∈ R ×W/ ∼ (simi-
larly, m

w ). The set of equivalence classes in R ×W/ ∼ we will denote W−1R (
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or RW ) and similarly, M ×W/ ∼ denoted W−1M . We have to make W−1R a
ring by defining

r1

w1
+
r2

w2
:=

r1w2 + r2w1

w1w2

r1

w1
· r2

w2
:=

r1r2

w1w2
.

We make W−1M a module over this ring W−1R by defining

m1

w1
+
m2

w2
:=

m1w2 +m2w1

w1w2

r

w1
· m
w2

:=
rm

w1w2
.

Exercise 1. Check for the well-defined property then show that W−1R is really
a commutative ring and W−1M is really a module over W−1R.

Remark. The identity of W−1R is 1
1 or w

w for all w ∈ W . Also, there exists a
ring map (sometimes called the canonical map) R→W−1R defined by r 7→ r

1 .

Definition. Let R be a ring and M , R-module and W a multiplicatively closed
set. The localization of R with respect to W , is the ring W−1R. Similarly, the
localization of M with respect to W is the W−1R-module W−1M .

Remark. If W = {xn}∞n=0 (see example 45) then we denote W−1R by Rx.
Likewise if W is a complement of a prime p (see example 46) then we denote
W−1R by Rp.

Proposition 23. The ring W−1R has the following universal property:

R //

f ��

W−1R

∃!g
||

S

Given a ring homomorphism such f(w) is a unit in S for all w ∈ W , then
there exists a unique ring homomorphism g : W−1R → S making the diagram
commute.

Proof. Define g( rw ) = f(w)−1f(r). This is forced since

g(r) = g(
w

1
· r
w

) = g(w) · g(
r

w
),

but g(w) = f(w) and g(r) = f(r) are forced. Therefore f(w)−1f(r) = g( rw ) is
forced.

The reader should check that g really is a ring homomorphism.
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Remark. Let U , W be multiplicatively closed in R. The set UW = {uw | u ∈
U,w ∈ W} is also multiplicatively closed. (Caution, it could happen that 0 ∈
UW ). Then

(UW )−1R ' U−1(W−1R)

This can be checked since the right hand side has the same universal property
as the left hand side.

Remark. If 0 ∈W then W−1R = 0

Theorem 24. Let M , N , L be R-modules and W a multiplicatively closed set.

(1) If M
α−→ N

β−→ L is an exact sequence, then MW
αW−→ NW

βW−→ LW is
also an exact sequence of RW -modules.

(2) M ⊗R RW 'MW

Proof. First given α : M → N , define αW : MW → NW by αW ( xw ) = α
w . This

is a well-defined RW -module homomorphism. Let n
w ∈ ker(βW ) where n ∈ N

and w ∈W . Since
0

1
= 0 = βW

( n
w

)
=
β(n)

w

there exists a u ∈W such that u(0 ·w− β(n)) = 0. Hence un ∈ ker(β) = im(α)
because uβ(un) = 0 implies β(un) = 0. So there exists m ∈ M such that
α(m) = un. Then

αW

( m
uw

)
=
α(m)

uw
=
un

uw
=
n

w

and therefore ker(βW ) ⊆ im(αW ).
Conversely, if n

w ∈ αW (mu ), then

βW

( n
w

)
= βW ◦ αW

(m
u

)
=
β ◦ α(m)

u
=

0

u
= 0.

To show the second part, define θ : M ×RW →Mw by θ(m, ru ) = rm
u where

m ∈M , u ∈W , and r ∈ R. This is a bilinear map, so we get an induced map

M ⊗RW
φ−→MW

m⊗ r

u
7→ rm

u
.

Claim 1. The map φ is one-to-one and onto.

To show φ is onto, just note that φ(m⊗ 1
u ) = m

u . Now suppose that

φ

(
n∑
i=1

mi ⊗
ri
ui

)
= 0.

Fist note that with out any loss of generality all the ui’s are the same, say u.
Then ∑

mi ⊗
ri
u

=
∑

miri ⊗
1

u
=
(∑

miri

)
⊗ 1

u
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which is of the form m⊗ 1
u . Thus we have φ(m⊗ 1

u ) = 0 so m
u = 0. But this is

true if and only if there exists a w ∈W such that wm = 0. Then

m⊗ 1

u
= m⊗ w

wu
= wm⊗ 1

wu
= 0⊗ 1

wu
= 0.

Corollary 25. The map R→ RW is flat.

Proof. This follows from the canonical isomorphisms of the tensor product and
the definition of a flat homomorphism (see definition on page 26).

Corollary 26. If I is an ideal, M an R-module, and W a multiplicatively closed
set, then

W−1(M/IM) 'W−1M/I(W−1M).

In particular,

W−1(R/I) 'W−1R/W−1I.

In other words, localization commutes with quotients.

Proof. Apply the theorem to the left hand side and then use the canonical
isomorphisms of the tensor product to obtain the right hand side.

Example 47. Given the polynomial ring k[x, y] in two indeterminates over a
field k, the structure of the ring (

k[x, y]

(xy)

)
x

can be determined using the previous corollary. That is,(
k[x, y]

(xy)

)
x

' k[x, x−1, y]

(xy)k[x, x−1, y]
.

Notice that (xy)k[x, x−1, y] = (y)k[x, x−1, y]. So substituting and applying the
corollary again we obtain(

k[x, y]

(xy)

)
x

' k[x]x ' k[x, x−1].

2 Ideals and Localization

Example 48. Let R be a domain with W a multiplicatively closed set in R,
0 /∈W . Then W−1R is still a domain.

Proof. Suppose r
w ·

r′

w′ = 0. This means there exists w′′ ∈W such that w′′rr′ = 0.

Since w′′ 6= 0, either r = 0 or r′ = 0. Thus either r
w = 0 or r′

w′ = 0.
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Definition. If R is a domain and W = R − {0}, then W−1R is a field called
the field of fractions of R, e.g. if R = Z, then the field of fractions is Q.

Theorem 27. Let R be a ring, W a multiplicatively closed set of R.

(1) If I is an ideal of R then W−1I is an ideal of W−1R where

W−1I =

{
i

w
| i ∈ I, w ∈W

}
.

(2) If J is an ideal in W−1R then

J ∩R =

{
i ∈ R | i

1
∈ J

}
.

(3) The previous two statements give a one-to-one inclusion preserving corre-
spondence between Spec(W−1R) and primes p in R such that p ∩W = ∅

Proof. For the first part, use the definition of addition and multiplication in the
ring W−1R.

In general, if φ : R→ S is a ring homomorphism, J ⊆ S, then φ−1(J) is an
ideal in R. Apply this to the canonical map from R into W−1R and we have
that φ−1(J) = J ∩ R is an ideal. Further, if i

w ∈ J then w i
w = i

1 implies that

i ∈ J ∩R. Thus i
w ∈W

−1(J ∩R) and the second statement follows.
For the third statement, consider q ∈ Spec(R) and q ∩W = ∅. Then since

W−1(R/q) 'W−1R/W−1q

we can apply the above general remark to the domain R/q. We see that
W−1(R/q) is a domain and so W−1q ∈ Spec(W−1R). (W ∩ q = ∅ implies
that W−1q = W−1R)

Conversely, if Q ∈ Spec(W−1R) then Q ∩ R = q is prime. (This is true for
general homomorphisms) By (2) we have that W−1q = Q.

Remark. If I1 and I2 are ideals, it is possible that W−1I1 = W−1I2 without
I1 = I2.

Example 49. Let R = k[x, y] be a polynomial ring in two variables over a
field and W = {yn}n>0. Consider the ideals I1 = (x2, xy) and I2 = (x). Then
W−1I1 = W−1I2 but W−1I1 ∩R = (x).

Remark. In general, if I ⊆ R is an ideal, then

W−1I ∩R = {r ∈ R | ∃ w ∈W with w · r ∈ I} =
⋃
w∈W

I : w.

This contains I if I is not prime. If I is prime,⋃
w∈W

I : w = I.
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Corollary 28. If p ∈ Spec(R) then Rp is local with maximal ideal pRp.

Proof. We know that Spec(Rp) is the set of primes Q in R such that Q∩Rp = ∅,
i.e. primes Q such that Q ⊆ p.

Proposition 29. Let R be a ring, R[x] a polynomial ring over x. Suppose
Q1 ⊆ Q2 ⊆ Q3 for prime ideals of R[x]. If

Q1 ∩R = Q2 ∩R = Q3 ∩R

then Q1 = Q2 or Q2 = Q3.

Proof. Set q = Q1 ∩R = Q2 ∩R = Q3 ∩R. Then

R/q[x] ' R[x]/qR[x].

Also set Q′1 = Q1/qR[x], Q′2 = Q2/qR[x], Q′3 = Q3/qR[x]. In R/q we have

Q′1 ∩R/q = Q′2 ∩R/q = Q′3 ∩R/q,

so without loss of generality we can assume R = R/q is a domain with Q1 = Q′1,
Q2 = Q′2 and Q3 = Q′3 and

Q1 ∩R = Q2 ∩R = Q3 ∩R = 0.

Let W = Rr {0}. Then W ∩Qi = ∅, therefore

W−1Q1 ⊆W−1Q2 ⊆W−1Q3

is a chain of primes in W−1(R[x]) = R[x]⊗RW−1R = (W−1R)[x]. But W−1R
is a field, so (W−1R)[x] is a polynomial ring over a field, and this means:

Spec((W−1R)[x]) = {0} ∪ {f(x)},

where f(x) 6= 0 is a irreducible polynomial. Hence the longest chain of primes
has length two (because (W−1R)[x] has Krull dimension equal to one), therefore
W−1Q1 = W−1Q2 or W−1Q2 = W−1Q3, which implies

Q1 = Q2 or Q2 = Q3.

Theorem 30 (Local - Global Principle). Let R be a ring and M and R-module.
The following are equivalent:

(1) M = 0;

(2) Mp = 0 for all p ∈ Spec(R).

(3) Mm = 0 for all m maximal in Spec(R).
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Proof. Clearly (1) ⇒ (2) ⇒ (3). Now assume (3) and by way of contradiction
suppose M 6= 0, i.e. there exists x ∈ M , x 6= 0. This means ann(x) = {y ∈
R : yx = 0} 6= R, therefore there exists a maximal ideal m ∈ Spec(R) such that
ann(x) ⊆ m.

Claim. x
1 6= 0 in Mm.

Proof of the Claim. Assume x
1 = 0, then there exists w ∈ R r m such that

xw = 0 in R. Therefore w ∈ ann(x) ⊆ m, which is a contradiction.

So the claim holds, but this is a contradiction since we assumed Mm = 0.

Corollary 31. Let f : M → N be an homomorphism of R-modules. Then f
is injective (respectively surjective, isomorphism) if and only if the homomor-
phisms fp : Mp → Np are injective (respectively surjective, isomorphism) for all
p in Spec(R).

Proof. Note that fp
(
m
s

)
= f(m)

s for s /∈ p. Also f is injective ⇐⇒ ker f = 0.
f is surjective ⇐⇒ cokerf = 0.
f is isomorphism ⇐⇒ ker f = cokerf = 0.

But the Local-Global Principle says that it is enough to check (ker f)p and
(cokerf)p for all p ∈ Spec(R). Finally, since ⊗RRp is flat, we get (ker f)p =
ker fp and (cokerf)p = cokerfp. Hence f is injective ⇐⇒ fp is injective for all p ∈ Spec(R).

f is surjective ⇐⇒ fp is surjective for all p ∈ Spec(R).
f is isomorphism ⇐⇒ fp is isomorphism for all p ∈ Spec(R).

Remark. If M is generated by x1, . . . , xn, then for all multiplicatively closed
sets W , W−1M is generated by x1

1 , . . . ,
xn

1

Proof. Assume x1, . . . , xn generateM , then there is a surjectiveR-homomorphism

ϕ : Rn →M
ei 7→ xi

ϕ is surjective, therefore ϕW is also surjective, i.e.

ϕW : W−1Rn →W−1M
ei
1 7−→

xi

1

is a presentation forW−1M , which is generated by ϕW
(
e1
1

)
= x1

1 , . . . , ϕW
(
en
1

)
=

xn

1 .
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Remark. If R is local and M is finitely generated then all minimal generating
sets of M have the same number of elements; namely the dimension of M/mM
over R/m where m is the unique maximal ideal.

Proof. By Nakayama’s Lemma M = Rx1 + . . . Rxn if and only if M = Rx1 +
. . .+Rxn+mM . Therefore x1, . . . , xn minimally generate M if and only if their
images x1, . . . , xn form a k = R/m-basis for the vector space M/mM .

Example 50. Suppose R has nontrivial idempotents, say e. Then R itself is
generated by {1}, but it is also minimally generated by {e, 1− e}

Definition. If M is an R-module, the support of M is the set of prime ideals
p in Spec(R) such that Mp 6= 0. This set is denoted Supp(M).

Proposition 32. If M is finitely generated then

Supp(M) = {p ∈ Spec(R) | p ⊇ ann(M)} = V (ann(M))

Proof. Mp = 0 if and only if there exists s /∈ p such that sM = 0 if and only if
there exists s /∈ p such that s ∈ ann(M) if and only if ann(M) 6⊆ p.

3 UFD’s and Localization

Theorem 33. Let R be a ring and let W be a multiplicatively closed set.

(1) If R is UFD then W−1R is UFD.

(2) Suppose there exists a set of prime elements Λ = {xi} ⊆ W which are
NZD such that every element w ∈W can be written as

w =
∏
i

xaii .

If W−1R is UFD and R satisfies ACC (Ascending Chain Condition) then
R is UFD.

To prove this theorem we need some further results.

Lemma 34. Let R,W and Λ be as above. Then every r ∈ R can be written in
the form r = wr′ for some w ∈W and xi 6 | r′ for all xi ∈ Λ.

Proof. If xi 6 | r for all xi ∈ Λ then take r′ = r and w = 1. Otherwise r = r1xi
for some r1 ∈ R, xi ∈ Λ. Note that (r) ( (r1). Repeat the process with r1 in
place of r. Inductively we get a chain

(r) ( (r1) ( (r2) ( . . .

which must stabilize at some point since R is Noetherian. If (rn) = (rn+1) this
means that xi does not divide rn for all xi ∈ Λ. But then r = wrn for some
w ∈W by construction.
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Lemma 35. Suppose that
(
z
1

)
⊆ W−1R is a prime ideal. Write z = wz′ as in

Lemma 34. Then(z
1

)
=

(
z′

1

)
and

(
z′

1

)
∩R = (z′) is prime in R.

Proof. Clearly
(
z
1

)
=
(
z′

1

)
since w

1 is invertible in W−1R. Also (z′) ⊆ R is a

prime since
(
z′

1

)
is a prime in W−1R. Moreover we have:(

z′

1

)
∩R =

⋃
w∈W

(z′ : w),

therefore we are done if we prove that (z′ : w) = (z′) for all w ∈ W . Let
r ∈ (z′ : w), then there exists s ∈ R such that wr = z′s. By definition of Λ in
Theorem 33 there exists a1, . . . , an integers such that w =

∏
i x

ai
i . Therefore

xa11 · . . . · xann r = z′s.

Hence xi|z′s but xi 6 | z′ for all i, and since the xi’s are prime we get xi|s for
all i. So we can cancel the xi’s one at a time to get r = z′t for some t ∈ R, i.e.
r ∈ (z′).

Proof of Theorem 33. (1) Recall that to prove that a domain is UFD we only
need to show that every irreducible element is prime, provided we have ACC
(Ascending Chain Condition) on principal ideals. R is UFD, hence a domain,
therefore W−1R is a domain. If x ∈ R is irreducible then x is prime, therefore
W−1(x) =

(
x
1

)
is prime in W−1R provided W ∩ (x) = ∅. Set

W ′ := {x ∈ R : ∃w ∈W,x|w}

Claim. W−1R = (W ′)−1R

Proof of the Claim. Let x ∈ W ′ and write xy = w ∈ W . in W−1R w is a unit,
then

1 = w−1xy = x(w−1y) = y(w−1x)

so x and y are also units. This means that W−1R satisfies the same property
as (W ′)−1R and therefore they are isomorphic.

By the Claim we can assume without loss of generality that W = W ′. Let
b
w ∈W

−1R and write b = x1 · . . . · xn a product of primes (R is UFD). Then

b

w
=

1

w

x1

1
. . .

xn
1
.

Now xi

1 is either a unit (if xi ∈W ′) or a prime element (if xi /∈W ′).
(2) It suffices to show that every irreducible element r ∈ R is prime. There are
two cases:
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(1) r
1 is a unit in W−1R, i.e. r ∈ W . Since every element in W is a product
of xi’s in Λ, but also r is irreducible, we have that r = xj for some j, and
hence it is prime.

(2) r
1 is not a unit, then there exists a prime ideal

(z
1

)
⊆ W−1R such that

r

1
∈
(z

1

)
. Therefore there exist s ∈ R and w ∈W such that

r

1
=
z

1

s

w
⇒ wr = zs.

Without loss of generality we can replace z with z′ of Lemma 35 to assume
xi 6 | z for all xi ∈ Λ. By Lemma 35 z is prime and z|wr but z 6 | w, therefore
z|r. Finally r is irreducible, hence (r) = (z) is prime.

Corollary 1. If R is a UFD, so is R[x1, . . . , xn].

Proof. By induction we can assume n = 1 (write x := x1). Let W := R r {0}.
Since R is UFD, W satisfies the conditions of Theorem 33 (2), and it satisfies
them not only for R but also for R[x]. Therefore R[x] is UFD if W−1R[x] is
UFD. Finally W−1R[x] = (W−1R)[x] = K[x] where K = W−1R is a field,
therefore it is a PID and hence a UFD.

Example 51. Consider

R :=
C[x1, x2, x3, x4]

(x2
1 + x2

2 + x2
3 + x2

4)
' C[u, v, s, t]

(uv − st)
=: S

via the isomorphism u = x1 + ix2, v = x1 − ix2, s = x3 + ix4, t = x3 − ix4. S
is clearly not UFD, and so is R.

Example 52. Consider n ≥ 5 and

R :=
C[x1, . . . , xn]

(x2
1 + . . .+ x2

n)
' C[u, v, x3, . . . , xn]

(uv + x2
3 + . . . x2

n)
=: S.

Then u is prime since S/uS ' C[v,x3,...,xn]
(x2

3+x2
4+x2

5)
is a domain. Also Su ∼= (C[u, x3, x4, x5])u

is a UFD, hence S is a UFD by Theorem 33 (2), and so is R.
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Chain Conditions

Definition. Let (S,≤) be a partially ordered set. Then S satisfies:

(1) The ascending chain condition (ACC) if every ascending chain

s1 ≤ s2 ≤ . . .

of elements in S stabilizes, i.e. there exists n ∈ N such that sn = sn+1 =
sn+2 = . . ..

(2) The descending chain condition (DCC) if every descending chain

t1 ≥ t2 ≥ . . .

of elements in S stabilizes, i.e. there exists m ∈ N such that tm = tm+1 =
tm+2 = . . ..

1 Noetherian Rings

Definition. A ring R is Noetherian if the set of all ideals satisfies ACC with
respect to the inclusion. This means that every ascending chain of ideals has a
maximal element, i.e., if

I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · ·

is a chain of ascending ideals Ij , then there exists n sufficiently large such that
In = In+1.

Proposition 36. The ring R is Noetherian if and only if every ideal in R is
finitely generated.

Proof. Assume R is Noetherian and let I be and ideal in R. Let f1 ∈ I. If
(f1) = I we are done. If not, choose f2 ∈ I \ (f1). If (f1, f2) = I then stop.
Incuctively, we have a chain,

(f1) ⊆ (f1, f2) ⊆ (f1, f2, f3) ⊆ · · · .
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Since R is Noetherian, this chain stops and it can only stop when I is generated
by these elements.

Conversely, if we have an ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · · ,

let J = ∪∞i=1Ii. This is an ideal, hence J = (f1, . . . , fn), and there exists an N
sufficiently large such that (f1, . . . , fn) ⊆ IN . Therefore

J ⊆ IN ⊆ IN+1 ⊆ · · · ⊆ J.

So IN = IN+1.

Example 53. Examples of Noetherian Rings:

(1) The integers Z.

(2) Any field.

(3) If k is a field, then k[x] is Noetherian.

Theorem 37 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[x1, . . . , xn]
is Noetherian.

Proof. By induction on n, it suffices to prove the case when n = 1 since
R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]. We want to prove R[x] is Noetherian.
Let

f(x) = r0 + r1x+ r2x
2 + · · ·+ rnx

n

be an element of R[x] such that rn 6= 0. Define in(f) = rn. If I ⊆ R[x] is an
ideal, then

in(I)j = {in(f) | f ∈ I, deg(f) 6 j} ∪ {0}.

Notice that in(I)j is an ideal in R: take a ∈ in(I)j and r ∈ R, then if ra = 0
clearly ra ∈ in(I)j . If ra 6= 0 then we have

axi + lower degree terms

is an element of I, with i 6 j, therefore

(ra)xi + lower degree terms ∈ I,

which means ra ∈ in(I)j . To prove that ∈ Ij is closed under the sum pick
a, b ∈ in(I)j , then there exist

f(x) = axi + . . . g(x) = bxk + . . .

with k ≤ i ≤ j without loss of generality. Then a+ b = in(f +xi−kg) which has
degree i ≤ j.

Now let I ⊆ R[x] be an ideal. Notice:

in(I)0 ⊆ in(I)1 ⊆ in(I)2 ⊆ . . .



1 Noetherian Rings 41

is an ascending chain of ideals in R, which is Noetherian by assumption. There-
fore there exists N ∈ N such that

in(I)N = in(I)N+1 = . . .

Also in(I)j is finitely generated for all 0 ≤ j ≤ N , hence choose generators
rj1, . . . , rjmj for ∈ Ij , for all 0 ≤ j ≤ N . Pick now fji ∈ I such that in(fji) = rji.

Claim. I = (f01, . . . , f0m0 , . . . , fN1, . . . , fNmN
) =: J .

Proof of the Claim. Clearly J ⊆ I. Conversely assume by way of contradiction
that I 6= J . Then choose f ∈ I of least degree such that f /∈ J . If deg f = k,
then in(f) ∈ in(I)k. There are two cases:

• k ≥ N : under this assumption in(f) ∈ in(I)N = (rN1, . . . , rNmN
). Write:

in(f) =

mN∑
l=1

slrNl

with sl ∈ R and consider

g := f −
mN∑
l=1

slx
k−NfNl.

This polynomial has coefficient zero in degree k, since

in(f) =

mN∑
l=1

slrNl = in(

mN∑
l=1

slx
k−NfNl).

By minimality in the choice of f we have g ∈ J , therefore:

f = g +

mN∑
l=1

slx
k−NfNl ∈ J

which is a contradiction. Therefore I = J in this case.

• If k < N proceed as in the previous case: pick f of least degree such that
f ∈ I r J and write

in(f) =

mk∑
l=1

slrkl.

Again cancel the leading term of f , which is in(f)xk, using fk1, . . . , fkmk
:

g := f −
mk∑
l=1

slfkl ∈ J

and therefore f inJ , contradiction. Hence again I = J .
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So I is finitely generated and R[x] is Noetherian.

Remark. If R is Noetherian and I ⊆ R is an ideal, then R/I is Noetherian.

Remark. IfR is Noetherian andW is multiplicatively closed, thenRW is Noethe-
rian.

Proof. Let J1 ⊆ J2 ⊆ . . . be an ascending chain of ideals in RW . Then there
exists N ∈ N such that JN ∩R = JN+1 ∩R = . . . which implies

JN = (JN ∩R)RW = (JN+1 ∩R)RW = JN+1 = . . . .

2 Noetherian Modules

Definition. Let R be a ring and let M be a R-module. The following are
equivalent:

(1) Every submodule of M is finitely generated.

(2) M satisfies ACC on submodules.

(3) Any ordered set of submodules has a maximal element with respect to
containment.

Such a module M is said to be Noetherian.

Proof. The proof is the same as the one given for ideals.

Proposition 38. (1) If N ⊆ M is a submodule and M is Noetherian, then
M/N is Noetherian.

(2) If N ⊆M is a submodule and both N and M/N are Noetherian, then M
is Noetherian.

Proof. (1) Immediate from the definition and the 1-1 correspondence:

{K/N ⊆M/N submodule} 1−1←→ {N ⊆ K ⊆M submodule}.

(2) Suppose we have an ascending chain of submodules of M :

M1 ⊆M2 ⊆ . . .

Then consider:
M1 ∩N ⊆M2 ∩N ⊆ . . . ⊆ N

and
M1 +N

N
⊆ M2 +N

N
⊆ . . . ⊆M/N.

By assumption there exists n ∈ N such that

Mn ∩N = Mn+1 ∩N and
Mn +N

N
=
Mn+1 +N

N
.
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Claim. Mn = Mn+1.

Proof of the Claim. It is enough to show that if x ∈Mn+1, then x ∈Mn. Notice

that x+N ∈ Mn+1+N
N = Mn+N

N , hence there exists y ∈Mn such that

x+N = y +N.

Therefore x− y ∈ N and x− y ∈Mn+1, and so:

x− y ∈Mn+1 ∩N = Mn ∩N.

Finally, since y ∈Mn and x− y ∈Mn:

x = y + (x− y) ∈Mn.

Proposition 39. Let R be a Noetherian ring and let M be a R-module. The
following are equivalent:

(1) M is Noetherian.

(2) M is finitely generated.

Proof. (1)⇒ (2) Since M is Noetherian every submodule, in particular M itself,
is finitely generated.
(2) ⇒ (1) Let M =< x1, . . . , xn > and consider the map:

f : Rn →M
ei 7→ xi

where < e1, . . . , en > is the standard basis of Rn. R is a Noetherian, so is
a Noetherian R-module. Therefore Rn is Noetherian and Rn/ ker f ' M is
Noetherian too.

Remark 1. If M is Noetherian, then R/ann(M) is Noetherian.

Proposition 40. Let M be a Noetherian R-module and let f : M → M be a
surjective homomorphism. Then f is an isomorphism.

Proof. Let fn := f ◦ f ◦ . . . ◦ f the composition of f with itself n times. Note
that fn is surjective for all n and moreover:

ker f ⊆ ker f2 ⊆ . . . ⊆ ker fn ⊆ . . . ⊆M.

Since M is Noetherian there exists n ∈ N such that

ker fn = ker fn+1.

Let now x ∈ ker f . Since fn is surjective there exists y ∈M such that x = fn(y).
Apply f to get

0 = f(x) = fn+1(y)
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and hence y ∈ ker fn+1 = ker fn. This means:

0 = fn(y) = x,

i.e. f is injective and so it is an isomorphism.

Remark 2. This is no longer true if we switch surjective and injective in Propo-
sition 40. For instance consider:

Z // Z

1
� // 2

which is injective but not surjective.

3 Artinian Rings

Definition. If the set of ideals in a ring R satisfies DCC then R is said to be
Artinian.

Example 54. (1) Fields are Artinian.

(2) Any finite ring, e.g. Z/nZ is Artinian.

(3) Let k be a field and
R = k[x1, . . . , xn]/I

be a quotient such that dimk ≤ ∞. Then R is Artinian.

(4) Let k be a field and k ⊆ R be a subring of Mn(k) the n×n matrices with
coefficients in k. Then R is Artinian since dimk R ≤ ∞.

Remark 3. If R is Artinian, then it is Noetherian. However the converse is not
true, for instance R = k[x] is Noetherian but

R ⊇ (x) ⊇ (x2) ⊇ . . .

is a descending chain which does not stabilize.

Remark 4. If R1, R2 are Artinian then R1 ×R2 is Artinian.

Proposition 41. if R is Artinian, then every prime is maximal and there are
only finitely many maximal ideals.

Proof. Let p ∈ Spec(R) and pass to R/p. Relabel it as R so that without loss
of generality we can assume that R is a domain and we have to prove that it is
in fact a field. Assume not and pick x ∈ R, x 6= 0 which is not a unit. Then
consider

R ⊇ (x) ⊇ (x2) ⊇ . . .

that has to stabilize since R is Artinian. So there is n ∈ N such that (xn) =
(xn+1). So there exists a ∈ R such that xn = axn+1 and, since R is a domain,
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we can cancel xn and get 1 = ax, i.e. x is a unit. This is a contradiction,
therefore R is a field and p is maximal.

Assume now that there are infinitely many distinct maximal ideals in R, say
{mi}∞i=1. Consider:

m1 ⊇ (m1 ∩m2) ⊇ (m1 ∩m2 ∩m3) ⊇ . . .

Again since R is Artinian there exists k ∈ N such that

(m1 ∩m2 ∩ . . . ∩mk) = (m1 ∩m2 ∩ . . . ∩mk ∩mk+1).

But this means (m1 ∩ m2 ∩ . . . ∩ mk) ⊆ mk+1 and therefore, since they are
maximal (prime was enough) there exists i ∈ {1, . . . , k} such that mi ( mk+1,
contradicting the maximality of mi. Hence there are just finitely many maximal
ideals in R.

Theorem 42. Let R be a ring. The following facts are equivalent:

(1) R is Artinian.

(2) R is Noetherian and there exist only finitely many prime ideals, and all of
them are maximal.

Proof. (1)⇒ (2) By Proposition 41 we only need to show that R is Noetherian.
List all the maximal ideals m1, . . . ,mn.

Claim. There exists k ∈ N such that (m1 . . .mn)k = 0.

Proof of the Claim. Set I = m1 . . .mn, then

I ⊇ I2 ⊇ I3 ⊇ . . . ⊇ Ik = Ik+1

for some k since R is Artinian. Assume Ik 6= 0 and consider:

Λ := {J ⊆ R : JIk 6= 0}.

Note that I ∈ Λ, so Λ 6= ∅. Therefore there exists a minimal element J , and
this has to be a principal ideal, otherwise there exists x ∈ J such that xIk 6= 0
(this is because JIk 6= 0) and so (x)Ik 6= 0 and (x) ⊆ J . So set J = (x). Notice
that

(xI)Ik = xIk+1 = xIk 6= 0

so xI ∈ Λ and xI ⊆ (x) = J . By minimality it has to be xI = (x) and since
I = m1 . . .mn ⊆ m1 ∩ . . . ∩ mn = Jac(R) it has to be x = 0 by NAK. This is a
contradiction, hence Ik = (m1 . . .mn)k = 0.

By Chinese Remainder Theorem we have:

R =
R

(m1 . . .mn)k
' R

mk1
× . . .× R

mkn
.

R is Artinian, hence each R/mki is Artinian, and if each R/mki is Noetherian,
then so is R. So assume R = R/mk for some maximal ideal m, so that we
reduced to the case in which there is only one maximal ideal, and its k-th power
is zero. To prove that R is Noetherian induct on the least k such that mk = 0:
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• If k = 1 then m = 0 and R is a field, and hence Noetherian.

• If k > 1 then by induction R/mk−1 is Noetherian. Note that ann(mk−1) =
m, so that mk−1 is a R/m-module, i.e. a vector space. Now any vector
subspace of mk−1 is an ideal in R, so that dimR/m mk−1 ≤ ∞, since R is

Artinian, so DCC is satisfied on ideals. Hence mk−1 is a Noetherian R-
module and since both R/mk−1 and mk−1 are Noetherian, R is Noetherian
too.

(2) ⇒ (1) Let m1, . . . ,mn be the maximal ideals in R. These are all the primes
in R, so √

(0) = m1 ∩ . . .mn,

so, since R is Noetherian, there exists N >> 0 such that (m1 . . .mn)N = 0. By
Chinese Remainder Theorem

R ' R

mN1
× . . . R

mNn
.

A product of Artinian rings is artininan, so it is enough to show that R/mN

is Artinian for some ring R with a unique maximal ideal m such that mN = 0.
Induct on N :

• If N = 1 then R is a field, and hence Artinian.

• If N > 1 by induction R/mN−1 is Artinian. Also mN−1 is a R/m-vector
space of finite dimension, since R is Noetherian. Let

R ⊇ I1 ⊇ I2 ⊇ . . .

be a descending chain of ideals. Then going modulo mN−1:

R

mN−1
⊇ I1 + mN−1

mN−1
⊇ I2 + mN−1

mN−1
⊇ . . .

must stabilize, and also

R ∩mN−1 ⊇ I1 ∩mN−1 ⊇ I2 ∩mN−1 ⊇ . . .

must stabilize because mN−1 is a finite dimensional vector space. There-
fore there exists M >> 0 such that

IM + mN−1 = IM+1 + mN−1 and IM ∩mN−1 = IM+1 ∩mN−1.

This implies IM ⊆ IM+1 + mN−1 and so:

IM ⊆ IM∩(IM+1+mN−1) = IM+1+(IM∩mN−1) = IM+1+(IM+1∩mN−1) ⊆ IM+1,

which means IM = IM+1 and the chain stabilizes.
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Definition. A R-module M is said to be Artinian if it satisfies DCC on sub-
modules.

Remark 5. R is Artinian as a ring if and only if R is Artinian as a module over
itself.

Remark 6. If N ⊆M is a submodule, then M is Artinian if and only if N and
M/N are Artinian.



Chapter 5

Primary Decomposition

1 Definitions and Examples

Definition. An ideal I ⊆ R is said to be irreducible if

I = J ∩K ⇒ J = I or K = I.

Definition. An ideal q ⊆ R is said to be primary if whenever xy ∈ q and
x /∈ √q, it has to be y ∈ q.

Example 55. In Z we have (m) ∩ (n) = (lcm(m,n)), hence an ideal (k) is
irreducible if and only if k 6= lcm(m,n) unless k = m or k = n. This is
equivalent to require that k = pl for some p ∈ Z prime and some integer l.
Primary ideals in Z are also of this form. In fact if q = (pl) and xy ∈ q, then
pl|xy. Assume x /∈ √q = (p), then p 6 | x and hence pl|y, that is y ∈ q.

Remark 7. If q ⊆ R = Z, then

q primary ⇐⇒ q irreducible ⇐⇒ q = (pl) for some p prime and some l ∈ N.

Proposition 43 (Noether). If R is a Noetherian ring and q ⊆ R is irreducible,
then q is primary.

Proof. Suppose not, and let ab ∈ q such that a /∈ √q and b /∈ q. Notice that it
has to be an /∈ q for all n > 0. For n ∈ N consider:

q : an = {r ∈ R : ran ∈ q}

and notice that
q ⊆ (q : a) ⊆ (q : a2) ⊆ . . .

Since R is Noetherian the chain stabilizes, i.e. there exists k ∈ N such that
(q : ak) = (q : ak+1) = . . .

Claim. q = (q : ak)∩ (q+Rak) and furthermore q 6= (q : ak) and q 6= (q+Rak).
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Proof of the Claim. Clearly q ⊆ (q : ak)∩(q+Rak). Let r ∈ (q : ak)∩(q+Rak),
then r = c+ dak, with c ∈ q and d ∈ R. Also

ak(c+ dak) = rak ∈ q,

therefore da2k ∈ q, i.e. d ∈ (q : a2k) = (q : ak). Finally dak ∈ q and hence
r = c+ dak ∈ q.
Furthermore q 6= q : ak since bak = (ba)ak−1 ∈ q, hence b ∈ ((q : ak) r q) and
also ak ∈ (Rak r q) ⊆ ((q +Rak) r q).

Remark 8. The converse of Proposition 43 is not true. For instance in k[x, y]
the ideal (x, y)2 = (x2, xy, y2) is primary (a justification is given later) but it is
not irreducible, in fact:

(x, y)2 = (x2, y) ∩ (x, y2).

Proposition 44. Let R be a ring.

(1) If q is primary, then
√
q = p is prime (we often say that q is p-primary).

(2) If
√
q = m is maximal,then q is m-primary.

Proof. (1) Suppose that ab ∈ √q and a /∈ √q. There exists n >> 0 such that
anbn ∈ q, but am /∈ q for all m ≥ 1. Since q is primary it has to be bn ∈ q, and
hence b ∈ √q, which is prime.
(2) Suppose ab ∈ q and a /∈ m =

√
q. Then m+Ra = (1), therefore there exists

r ∈ R and m ∈ m such that 1 = ra+m. Since m ∈ m =
√
q there exists n ∈ N

such that mn ∈ q, therefore:

1 = 1n = (m+ ra)n = mn + sa

for some s ∈ R. Finally
b = mnb+ sab ∈ q

and so q is m-primary.

Remark 9. The converse of Proposition 44 (1) is not true in general if
√
q = p

is not maximal.

2 Primary Decomposition

Definition. Let R be a ring. An ideal I is said to have a primary decomposition
if we can write

I = q1 ∩ . . . ∩ qn,

where each qi is primary.

In this section we prove that every Noetherian ring has a primary decompo-
sition. Such a decomposition is not unique:
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Example 56.

(x2, xy) = (x) ∩ (x2, xy, yn) for all n ≥ 2.

However it has some degree of uniqueness.

Theorem 45 (Noether). Let R be a Noetherian ring. Then every ideal I ⊆ R
has a primary decomposition.

Proof. Since irreducible ideals are primary it suffices to prove that every ideal
is a finite intersection of irreducible ideals. Let

Λ := {J ⊆ R : J is not an intersection of finitely many irreducible ideals}.

Suppose Λ 6= ∅ and choose I ∈ Λ maximal (this is possible since R is Noethe-
rian). I itself cannot be irreducible (since I ∈ Λ), hence I = J ∩K with I ( J
and I ( K. Since I is maximal in Λ we have J /∈ Λ and K /∈ Λ. Therefore we
can write J and K as finite intersections of irreducible ideals, say J = J1∩. . .∩Jj
and K = K1 ∩ . . . ∩Kk. But then:

I = J ∩K = J1 ∩ . . . ∩ Jj ∩K1 ∩ . . . ∩Kk

can be written as a finite intersection of irreducible ideals. This is a contradiction
since I ∈ Λ, therefore Λ = ∅ and every ideal I ⊆ R has a primary decomposition.

The main effort in this section from now on is to try to make the primary
decomposition as unique as possible.

Lemma 46. Let q1 and q2 be p-primary ideals. Then q1 ∩ q2 is p-primary.

Proof. Let ab ∈ q1∩q2 and assume a /∈
√
q1 ∩ q2. Since

√
q1 ∩ q2 =

√
q1∩
√
q2 =

p we have that a /∈ √q1 =
√
q2 = p. But they both are primary, therefore b ∈ q1

and b ∈ q2, that is b ∈ q1 ∩ q2 and q1 ∩ q2 is p-primary.

Definition. A primary decomposition I = q1 ∩ . . . ∩ qn is minimal if

(1) No one of the qi’s can be deleted, that is⋂
j 6=i

qj 6⊆ qi

for all i = 1, . . . , n.

(2)
√
qi 6=

√
qj whenever i 6= j.

Remark 10. It follows immediately from Noether’s Theorem 45 and Lemma
46 that if R is Noetherian, then every ideal I ⊆ R has a minimal primary
decomposition.
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Theorem 47. Let R be a Noetherian ring, let I ⊆ R be an ideal and let I =
q1 ∩ . . .∩ qn be a minimal primary decomposition of I. Then the following facts
are equivalent for a prime p ⊇ I:

(1) p =
√
qi for some i.

(2) There exists x ∈ R such that I : x = p.

(3) There exists an embedding R/p ↪→ R/I.

Proof. (1) ⇒ (2) Let p =
√
qi and let m ≥ 1 be such that pm ⊆ qi. Such m

exists since R is Noetherian. Set J := q1 ∩ . . . ∩ q̂i ∩ . . . ∩ qn. We have:

Jpm ⊆ Jqi ⊆ J ∩ qi = I.

Choose N ≥ 1 such that JpN ⊆ I and JpN−1 6⊆ I. This N exists since the
decomposition is minimal, therefore J 6⊆ I, and it is finite since N 6 m. Choose
y ∈ JpN−1 r qi. Notice that

I : y =

⋂
j

qj

 : y =
⋂
j

(qj : y) = R ∩R ∩ . . . ∩ (qi : y) ∩ . . . ∩R = (qi : y)

because y ∈ JpN−1 ⊆ J ⊆ qj for all j 6= i. Also notice that yp ⊆ JpN ⊆ I by
definition of y, hence

p ⊆ I : y = qi : y.

Finally, let z ∈ qi : y, then zy ∈ qi, with y /∈ qi. Since qi is primary there exists
n ≥ 1 such that zn ∈ qi, which means z ∈ √qi = p. Therefore qi : y ⊆ p and
this forces p = I : y.
(2) ⇒ (3) Note that x /∈ I. Define:

ϕ : R→ R/I

r 7→ rx

Then ϕ is a R-homomorphism and kerϕ = p, thus there is an induced monomor-
phism:

ϕ̂ : R/p ↪→ R/I.

(3) ⇒ (1) Consider

ψ : R→ R/I

such that kerψ = p. Set x = ψ(1) modulo I, then x /∈ I. Note that

I : x = (q1 : x) ∩ . . . ∩ (qn : x) = p,

so that, using the fact that p is prime, there exists i such that

qi : x ⊆ p = (q1 : x) ∩ . . . ∩ (qn : x) ⊆ qi : x,
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and clearly √
qi : x ⊆ p ⊆

√
qi : x.

This implies
√
qi : x = p. As a consequence x /∈ qi, otherwise p =

√
qi : x = R,

which gives a contradiction. Then, let y ∈ √qi : x, so that there exists n ≥ 1
such that xyn ∈ qi. But x /∈ qi and qi is primary. This implies (yn)m ∈ qi for
some m ≥ 1, that is y ∈ √qi. Finally, one always has

√
qi ⊆

√
qi : x, so that√

qi : x =
√
qi = p.

Corollary 2. Let R be a Noetherian ring and let I ⊆ R be an ideal. If I =
q1 ∩ . . . ∩ qn = q′1 ∩ . . . ∩ q′m are minimal prime decompositions, then n = m
and, after re-indexing,

√
qi =

√
q′i for all i = 1, . . . , n.

Proof. Let a := {p : p is prime and p = I : x for some x ∈ R}. Then

{
√
q1, . . . ,

√
qn} = a = {

√
q′1, . . . ,

√
q′m}

and they all are distinct. So it has to be n = m and
√
qi =

√
q′i after re-

indexing.

Definition. Let R be a Noetherian ring and let I ⊆ R be an ideal. Let
I = q1 ∩ . . . ∩ qn be a minimal primary decomposition. Then the prime ideals√
q1, . . . ,

√
qn are called associated primes to R/I and we denote

Ass(R/I) := {
√
q1, . . . ,

√
qn}.

Proposition 48. Let R be a Noetherian ring and let I ⊆ R be an ideal. Then
x ∈ R is a zero divisor modulo I if and only if there exists p ∈ Ass(R/I) such
that x ∈ p. In other words⋃

p∈Ass(R/I)

p = {zero divisors modulo I}.

Proof. Suppose x ∈ p for some p ∈ Ass(R/I). Since p is associated there exists
r ∈ R such that p = I : r. If x ∈ I then it is zero modulo I. So suppose
x ∈ R r I. Since x ∈ p = I : r, we have rx ∈ I. Notice that r /∈ I since
I : r = p 6= (1), therefore x is a zero divisor modulo I.
Conversely assume r is a zero divisor modulo I. So there exists y /∈ I such that
ry ∈ I = q1 ∩ . . . ∩ qn. Since y /∈ I there exists qi such that y /∈ qi. Since
ry ∈ I ⊆ qi it has to be r ∈ √qi ∈ Ass(R/I).

Definition. Let R be a ring and let I ⊆ R be an ideal. A prime ideal p ⊇ I is
said to be a minimal prime of I if there is no prime ideal q such that

I ⊆ q ( p.

We denote the set of all minimal primes of I by Min(I).

Proposition 49. Let R be a Noetherian ring and let I ⊆ R be an ideal. Then
minimal primes of I exist and they are a finite number. In fact, every minimal
prime of I is an associated prime of R/I.
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Proof. Let I = q1∩. . .∩qn be a minimal primary decomposition and let pi =
√
qi

for all i = 1, . . . , n be the associated primes. Take pi minimal among {p1, . . . , pn}
(minimal in the sense that there is no pj such that pj ( pi). Notice that in
general there might be more than one prime among p1, . . . , pn satisfying this
condition. In that case just pick one. Assume that p is a prime such that
I ⊆ p ⊆ pi. Then

I = q1 ∩ . . . ∩ qn ⊆ p

and, since p is prime, we get qj ⊆ p for some j. Also, taking radicals, we get
pj ⊆ p. So pj ⊆ p ⊆ pi and, by minimality of pi, it has to be pj = q = pi. This
proves that pi is a minimal prime of I, and therefore minimal primes of I exist.
Now take p ⊇ I a minimal prime of I. With the same argument we can show
that I ⊆ pj ⊆ p for some j, and hence pj = p by definition of minimal prime.
Therefore every minimal prime of I is an associated prime of R/I. In particular
this means that there are only finitely many minimal primes of I.

Remark 11. Not every associated prime is a minimal prime. For instance:

I = (x2, xy) = (x) ∩ (x2, y) ⊆ k[x, y] = R.

In this case Min(I) = {(x)} ( Ass(R/I) = {(x), (x, y)}.

Proposition 50. Let R be a Noetherian ring and let I ⊆ R be an ideal. Let
I = q1 ∩ . . . ∩ qn be a minimal primary decomposition and suppose pi =

√
qi is

a minimal prime of I. Then:

qi =
⋃
s/∈pi

(I : s).

Proof. Let r ∈ (I : s) for some s /∈ pi. Then rs ∈ I ⊆ qi, and therefore r ∈ qi
because it is primary.
Conversely notice that

⋂
j 6=i qj 6⊆ pi, otherwise there would be qj ⊆ pi and hence

pj ⊆ pi. The decomposition is minimal, so the two primes cannot be equal, but
this would contradict the fact that pi is a minimal prime of I. So we can pick
s ∈

⋂
j 6=i qj r pi. Let x ∈ qi, then xs ∈

⋂n
j=1 qj = I, which means x ∈ (I : s)

for s /∈ pi.

Corollary 3. Primary components whose radicals are minimal primes are in-
dependent of the primary decomposition.

Proof. If I = q1 ∩ . . . ∩ qn is a minimal primary decomposition and pi =
√
qi is

a minimal prime of I, then by Proposition 50 we have

qi =
⋃
s/∈pi

(I : s).

In particular the right hand side is independent of the chosen decomposition,
and so is qi.
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Theorem 51 (Yao). Let R be a Noetherian ring and let I ⊆ R be an ideal. Let

q1 ∩ . . . ∩ qn = I = q′1 ∩ . . . ∩ q′n

be minimal primary decompositions, with
√
qi =

√
q′i. Then, for all 1 ≤ i ≤ n

I = q1 ∩ . . . ∩ qi−1 ∩ q′i ∩ qi+1 ∩ . . . ∩ qn

is still a minimal primary decomposition of I.

Remark 12. We know from Chapter 1 that

√
I =

⋂
p ⊇ I
p prime

p =
⋂

p∈Min(I)

p.

Then this is the unique minimal primary decomposition of
√
I.



Chapter 6

Integral Closure

1 Definitions and Notation

Definition. Let R ⊆ S be rings. An element s ∈ S is integral over R if there
exists a monic polynomial f(t) ∈ R[t] such that f(s) = 0. Trivially, if r ∈ R,
then r is integral over R. We say that S is integral over R if every element of S
is integral over R.

Example 57. The irrational number
√

2 is integral over Z because it satisfies
the polynomial t2 − 2.

Example 58. The rational number 1/2 is not integral over Z.

Example 59. If e is idempotent in S, then e is integral over R. That is, e is a
root of t2 − t.

Definition. We say R is integrally closed in S if s ∈ S integral over R implies
that s ∈ R. The set of all elements of S integral over R is called the integral
closure of R in S. If R is a domain with fraction field K, then the integral
closure of R is the set of all elements in K that are integral over R. We say
that R is integrally closed if R is integrally closed in K.

Remark. If K ⊆ L are fields, then L is integral over K if and only if L is
algebraic over K.

Definition. For rings R ⊆ S, S is said to be module-finite over R if S is finitely
generated as an R-module. S is said to be finite as an R-algebra if there exists
s1, s2, . . . , sn in S such that S = R[s1, s2, . . . , sn].

Remark. If S is module-finite, then S is finite as an R-algebra, but not the�

converse.

Example 60. Given a field k, the polynomial ring k[x] is finite as an algebra,
but not as a k-module
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Lemma 52. Let R ⊆ S ⊆ T be rings. Suppose S is module-finite over R and
T is module-finite over S, then T is module-finite over R.

Proof. Let T = St1 + · · ·+Stn and S = Rs1 + · · ·+Rsm. Then T =
∑
i,j Rsitj .

That is, the sitj ’s generate T.

Theorem 53. Let R ⊆ S be rings. The following are equivalent:

(1) S is module-finite over R;

(2) S = R[s1, s2, . . . , sn], where si ∈ S and each one is integral over R;

(3) S is a finitely generated R-algebra and S is integral over R.

Proof. (3)⇒ (2) Easy exercise.

(2)⇒ (1) Induct on n. For n = 1, we have that S = R[s] and there exists a
monic polynomial p(t) = tm+ r1t

m−1 + · · ·+ rm with ri ∈ R such that p(s) = 0.

Claim. S = R · 1 +R · s+ · · ·+R · sm−1

Proof of the Claim. Let the right hand side of the claim be defined asN . Clearly,
1, s, s2, . . . , sm−1 ∈ S, so that N ⊆ S. Conversely, if w > m− 1, write

sm = −(r1s
m−1 + · · ·+ rm)

Hence if we multiply by sw−m we get

sw = −(r1s
w−1 + · · ·+ rms

w−m).

Inductively we get sw ∈ N for all w ∈ N. This proves the claim.

For n > 1, let T = R[s1, . . . , sn−1] and S = T [sn]. Notice that by induction,
T is module-finite over R and that S is module finite over T . Hence by lemma
52 S is module-finite over R.

(1)⇒ (3): Write S = R · s1 + · · · + R · sn, then S = R[s1, . . . , sn], so S is
a finitely generated R-algebra. To show S is integral over R, let u ∈ S and
notice usi ∈ S. So there exists equations usi =

∑n
j=1 rijsj where rij ∈ R for

i = 1, 2, . . . , n. This implies

n∑
j=1

(u · δij − rij) = 0 (6.1)

for all i = 1, 2, . . . , n. Let

A =

u− r11 −rij
. . .

−rij u− rnn


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Then 6.1 can be written as

A


s1

s2

...
sn

 =


0
0
...
0

 .

Multiplication by the adjoint of A yields

det(A) 0
. . .

0 det(A)



s1

s2

...
sn

 =


0
0
...
0

 .

Hence det(A) · si = 0 for all i. Thus det(A)S = 0. In particular, det(A) · 1 = 0.
But if t is a variable, and we let we let

Ã =

t− r11 −rij
. . .

−rij t− rnn

 ,

then det(Ã)(t) is a monic polynomial in t with coefficients in R and det(Ã)(u) =
0. Hence u is integral over R.

Corollary 54. Let R ⊆ S be rings and T be the integral closure of R in S.
Then R ⊆ T ⊆ S and T is a ring.

Proof. Let u, v ∈ T , then u, v are integral over R. By (2) ⇒ (3) of theorem 53,
R[u, v] is integral over R, that is R[u, v] ⊆ T . Hence u · v and u+ v are integral
over R. Thus T is a ring.

2 Going-Up

Remark. If W is a multiplicatively closed set in R and R ⊆ S is an integral
extension, then so is RW ⊆ SW . (Just use the same equations for s

1 ∈ SW .)
Moreover, in general, if s is integral over R and w ∈ R, then ws in integral over
R since R[s] is integral over R. (You could also multiply the integral equation
for s by wn.)

Theorem 55 (Lying Over). Let R ⊆ S be an integral extension of rings, then
i∗ : Spec(S) → Spec(R) is surjective. I.e. for all q ∈ Spec(R), there exists
Q ∈ Spec(S) such that Q ∩R = q.

Proof. Let q ∈ Spec(R). Then Rq → Sq is integral. Suppose we prove that
there exists Q ∈ Spec(Sq) such that Q ∩ Rq = qRq. Set Q′ = Q ∩ S ∈ Spec(S)
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and compute

Q′ ∩R = (Q ∩ S) ∩R
= Q ∩ (S ∩R)

= Q ∩R
= (Q ∩ Sq) ∩R
= Q ∩ (Sq ∩R).

But if s/t ∈ Sq ∩R (for s ∈ S and t ∈ R r q), there exist r ∈ R and u ∈ R r q
such that

us = utr ∈ R.

Therefore
s

t
=
us

ut
∈ Rq,

and this shows Sq ∩R = Rq ∩R. Hence

Q′ ∩R = Q ∩ (Sq ∩R)

= Q ∩ (Rq ∩R)

= (Q ∩Rq) ∩R
= qRq ∩R
= q

Let us change the notation: without loss of generality, (R,m) is local and
q = m. R → S is integral. First suppose mS 6= S. Then there exists a prime
ideal Q in S such that mS ⊆ Q. But then m ⊆ mS ∩R ⊆ Q ∩R ⊆ R. Since m
is maximal, Q ∩R = m proving the theorem for this case.

If mS = S, write
∑n
i=1 risi = 1 for ri ∈ m and si ∈ S. By theorem 53,

B = R[s1, . . . , sn] is a finite R-module. Notice that we have mB = B. Hence
NAK implies that B = 0, a contradiction.

Remark. Suppose R ⊆ S is an integral extension and J ⊆ S is an ideal. Then
the injection

R

J ∩R
↪→ S

J

is an integral extension.

Theorem 56 (Going-Up). Let R ⊆ S be an integral extension of rings. Let
q0 ⊆ q1 ⊆ · · · ⊆ qn be a chain of primes in R. Let Q0 ∈ Spec(S) such that
Q0 ∩ R = q0. Then there exists a chain Q0 ⊆ Q1 ⊆ · · · ⊆ Qn of primes in S
such that Qi ∩R = qi for i = 0, 1, . . . , n.

Proof. By induction, it is enough to show there exists Q1 such that Q0 ⊆ Q1,
Q1∩R = q1, Q0∩R = q0, and q0 ⊆ q1. By the remark, R/q0 ↪→ S/Q0 is integral
and q1/q0 ∈ Spec(R/q0). Lying over gives a prime Q1/Q0 ∈ Spec(S/Q0) such
that Q1/Q0 ∩ R/q0 = q1/q0. Retracting back to S and R gives us the desired
result.
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Theorem 57 (Incomparable). Let R ⊆ S be an integral extension of rings.
Suppose that Q,Q′ ∈ Spec(S) and that Q ⊆ Q′. If Q∩R = Q′∩R then Q = Q′.

Proof. Consider R/Q ∩ R ⊆ S/Q (still integral). Without loss of generality,
R ⊆ S are domains, Q′ ∈ Spec(S), Q′ ∩ R = 0 and we want to prove Q′ = 0.
Let W = R − {0}. Then RW ⊆ SW is integral and Q′SW is a proper prime
(since Q′ ∩W = ∅). We have reduced to: k ⊆ S is integral where k is a field
and S a domain, Q′ ∩ k = 0. This implies Q′ = 0.

Hence by the following lemma the theorem is proved.

Lemma 58. Let R ⊆ S be an integral extension of domains. Then S is a field
if and only if R is a field.

Proof. Assume that R is a field and let u ∈ S, u 6= 0. There exists an equation
of least degree un + α1u

n−1 + · · · + αn = 0, αi ∈ R. By choice of n, αn 6= 0.
Hence u(un−1 + · · ·+ αn−1) = −αn ∈ R and u is a unit in S.

Now assume that S is a field and let u ∈ R, u 6= 0. Since S is a field,
u−1 ∈ S. Since S is integral over R, there exists an equation

(u−1)n + r1(u−1)n−1 + · · ·+ rn = 0

for ri ∈ R. Multiplication by un and solving for 1 shows that the inverse of u is
an element of R.

Definition. The Krull dimension of a ring R, denoted dimR, is the supremum
on n of the set of chains

p0 ( p1 ( . . . ( pn

where pi ∈ Spec(R).

Example 61. (1) If k is a field, dim k = 0.

(2) dimZ = 1.

(3) If k is a field, dim k[x] = 1.

Theorem 59. Let R ⊆ S be an integral extension of rings. Then Q ∈ Spec(S)
is maximal if and only if Q ∩R = q is maximal in R.

Proof. Notice that R/Q ∩ R ⊆ S/Q is an integral extension of domains. The
rest follows for lemma 58.

Example 62. The polynomial ring S = k[x, y, z] where k is a field is integral
over R = k[x3, y5, z9].

Proof. Consider the following, polynomials: t3−x3, t5− y5, t9− z9 ∈ R[t]. Use
theorem 53 so say that S is integral over R.

Theorem 60. Let R ⊆ S be an integral extension of rings, then dimR = dimS
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Proof. Let P0 ( P1 ( · · · ( Pn be a chain in R. By lying over, there exists Q0

over P0 and by going up, there exists

Q0

��

( Q1

��

( · · · ( Qn

��
P0 ( P1 ( · · · ( Pn

and all the Qi’s are distinct. Hence dimR 6 dimS.

Conversely,

Q0

��

( Q1

��

( · · · ( Qn

��

∈ Spec(S)

Q0 ∩R ( Q1 ∩R ( · · · ( Qn ∩R

where the Qi ∩R are distinct by incomparability. Thus dimR > dimS.

Example 63. (1) If R is an Artinian ring, then dimR = 0 (since every prime
is maximal).

(2) Consider the extension Z ⊆ Z[i]. Since Z[i] is integral over Z, dimZ[i] = 1.

Remark. If R is Noetherian and dimR = 0, then R is Artinian.

3 Normalization and Nullstellensatz

Theorem 61 (Neother Normalization Lemma). Let k be a field and S a finitely
generated k-algebra. Then there exists y1, y2, . . . , yd in S which are algebraically
independent over k such that S is integral (even module-finite) over the subring
k[y1, y2, . . . , yd] = R ⊆ S.

Definition. For k a field and S a ring such that k ⊆ S, y1, y2, . . . , yd ∈ S are al-
gebraically independent over k if for any non-zero polynomial p(T1, T2, . . . , Td) ∈
k[T1, T2, . . . , Td], p(y1, y2, . . . , yd) 6= 0. Equivalently, k[y1, y2, . . . , yd] is isomor-
phic to k[T1, T2, . . . , Td].

Example 64. Let k be a field and S = k[t2, t3] ' k[x, y]/(y2 − x3). We have
that t2 is algebraically independent over k, so let R = k[t2], i.e. a polynomial
ring in one variable. Notice that (t3)2 − (t2)3 = 0. For p(T ) = T 2 − t6 ∈ R[T ],
p(t3) = 0. Thus S is integral over R.
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Lemma 62. Let k be a field and f(x1, . . . , xn) ∈ k[x1, . . . , xn]. Then for all N
sufficiently large, there exists a change of variables,

x′n = xn

x′n−1 = xn−1 − xNn
x′n−2 = xn−2 − xN

2

n

...

x′1 = x1 − xN
n−1

n

such that when we write f(x1, . . . , xn) = g(x′1, . . . , x
′
n),

g(x′1, . . . , x
′
n) = α(x′n)L + (x′n)L−1g1(x′1, . . . , x

′
n−1) + · · ·+ gL(x′1, . . . , x

′
n−1)

where α 6= 0, α ∈ k and g1, g2, . . . , gL ∈ k[x′1, . . . , x
′
n−1].

Proof. Write f =
∑
α∈I λαx

α where α = (α1, . . . , αn) ∈ Nn, |I| < ∞, λα ∈ k,
λα 6= 0, xα = xα1

1 xα2
2 · · ·xαn

n . Choose N > maxα∈I{αi}. Rewrite f using the
change of variable (notice that k[x1, . . . , xn] = k[x′1, . . . , x

′
n]). So

f =
∑
α∈I

λα(x′1 + xN
n−1

n )α1 (x′2 + xN
n−2

n )α2 · · · (x′n−1 + xNn )α1x
αn
n .

We have to rewrite as a polynomial in xn. The highest degree contribution from

the α-monomial is xα1N
n−1+αnN

n−2+···+αn

N . Since N > αi for all αi appearing,
if L = α1N

n−1 + αnN
n−2 + · · · + αn, then this is the base N expansion of L.

This is unique. Hence f becomes monic up to a non-zero element of k as no
cancellation occurs.

Example 65. Let f(x1, x2, x3, x4) = x1x4 − x2x3 and x4 = x′4 + x1. Keep
x1, x2, x3 fixed. Then

f(x1, x2, x3, x4) = x1(x′4 + x1)− x2x3 = x2
1 + x′4x1 − x2x3

Proof of Noether Normalization Lemma; Theorem 61. We can write S = k[t1, . . . , tn].
Induct on n. If n = 0 there is nothing to prove. Assume that n > 0.

Case 1. t1, . . . , tn are algebraically independent over k.

If this is the case, then take yi = ti, then R = S.

Case 2. There exists a non-zero polynomial f(x1, . . . , xn) ∈ k[x1, . . . , xn] such
that f(t1, . . . , tn) = 0. With out loss of generality, using the lemma, we can
assume that

f = tLn + tL−1
n g1(t1, . . . , tn−1) + · · ·+ gL(t1, . . . , tn−1).

Then we have an integral extension

k ⊆ k[t1, . . . , tn−1]
integral

⊆ k[t1, . . . , tn] = S.
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By induction, there exists y1, . . . , yd ∈ k[t1, . . . , tn−1]. algebraically independent
over k such that

k[y1, . . . , yd]
integral

⊆ k[t1, . . . , tn−1]
integral

⊆ S.

Therefore S is integral over k[y1, . . . , yd].

Example 66. Let k be a field and consider the ring k[x, y, u, v] such that(
x
y

)(
u v

)
=

(
xu xv
yu yv

)
and det

(
xu xv
yu yv

)
= 0.

If S = k[xu, xv, yu, yv], find a polynomial subring over which S is integral.
Let f(x1, x2, x3, x4) = x1x4 − x2x3. Then f(xu, yu, xv, yv) = 0. If we let

x′4 = x4 − x1 as in example 65, then

f(x1, x2, x3, x4) = x2
1 + x′4x1 − x2x3 = g(x1, x2, x3, x

′
4)

and g(xu, yu, xv, yv) = 0. Since g is monic in x1, xu is integral over the polyno-
mial ring k[yu, xv, yv−xu] ⊆ S and yu, xv, yv−xu are algebraically independent.

Corollary 63. Let K and L be fields, L a finitely generated K-algebra. Then
L is algebraic over K. In particular, if K = K (the algebraic closure of K),
then L = K.

Proof. By the normalization lemma, there exists y1, . . . , yd algebraically inde-
pendent over K such that K[y1, . . . , yd] ⊆ L is integral. Since L is a field, we
must have K[y1, . . . , yd] is a field. Hence d = 0 and L is algebraic over K.

Theorem 64. Let S = k[t1, . . . , tn] be a finitely generated k-algebra, and let m
be a maximal ideal of S. Then there exists a canonical embedding k ↪→ S/m = L
and L is algebraic over k.

Proof. There exists a map

k �
� //

φ

>>
S // S/m.

Since k is a field and φ 6= 0, ker(φ) = 0. But L = k[t1, . . . , tn], ti = ti + m.
Apply the corollary to finish the proof.

Corollary 65. Let k be an algebraically closed field, R = k[x1, . . . , xn]. Then
every maximal ideal m of R has the form:

m = (x1 − α1, x2 − α2, . . . , xn − αn)

where αi ∈ k. Conversely, all such ideals are maximal.
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Proof. Let α = (α1, . . . , αn) and φα : k[x1, . . . , xn] → k be the evaluation
map f(x1, . . . , xn) 7→ f(α1, . . . , αn). This is a surjective ring homomorphism
so R/ ker(φα) ' k; i.e. mα = ker(φα) is maximal. Clearly (x1 − α1, x2 −
α2, . . . , xn − αn) ⊆ mα. By the Taylor expansion,

f(x1, . . . , xn) = f(α1, . . . , αn) +
∑
i

(xi − αi)
∂f

∂xi
(α) + other terms in (xi − αi)

Hence f(x) ≡ f(α) (mod (x1−α1, x2−α2, . . . , xn−αn)). So all said ideals are
maximal.

Let m be maximal in R. By theorem 64 the map k = k ↪→ R/m implies that
k = R/m. Hence there exists αi ∈ k where αi 7→ xi + m for all i = 1, . . . , n. I.e.
αi+m = xi+m, thus xi−αi ∈ m. Therefore (x1−α1, x2−α2, . . . , xn−αn) ⊆ m
and by above we have equality.

Theorem 66 (Hilbert’s Nullstellensatz). Let k be a field, R = k[x1, . . . , xn],
and I an ideal of R. Then √

I =
⋂
m⊇I

m

where m are maximal ideals in R.

Proof. First reduce to the case k is algebraically closed. Let k be the alge-
braic closure of k. We now have an integral extension R = k[x1, . . . , xn] ⊆
k[x1, . . . , xn] = S. Suppose we prove the theorem for S. Then for all I ⊆ R,

√
IS =

⋂
n⊇IS

n

where n is maximal in S. Hence
√
IS ∩R = (

⋂
n⊇IS

n) ∩R =
⋂

n⊇IS

(n ∩R) =
⋂
m⊇I

m

where m is maximal in R. And since
√
IS =

⋂
p for p ∈ Spec(S) containing IS,

by going up √
IS ∩R =

⋂
p⊇IS

p ∩R =
⋂
p⊇I

p =
√
I.

Hence without loss of generality, k = k. Let f ∈
⋂

m⊇I m for m maximal in

R. Suppose f /∈
√
I and consider R[y] = k[x1, . . . , xn, y].

Claim. (
√
I, yf − 1) = R[y].

If not, then (
√
I, yf−1) ⊆ m for m maximal in R[y], i.e. m = (x1−α, . . . , xn−

αn, y − β). Hence I ⊆ (x1 − α, . . . , xn − αn) and βf(α1, . . . , αn) − 1 = 0. But
by assumption, f ∈ (x1 − α, . . . , xn − αn), and thus f(α1, . . . , αn) = 0. A
contradiction.

Now write
1 =

∑
i

hi(x, y)gi(x) + l(x, y)(xf − 1)
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where gi(x) ∈
√
I. Substitute y with 1/f to get 1 =

∑
hi(x, 1/f)gi(x). Hence

for N � 0 we have that

fN =
∑
i

fNhi(x, 1/f)gi(x) ∈
√
I.

That is, f ∈
√
I.

4 Going-Down

Proposition 67. Let A ⊆ B be rings and C the integral closure of A in B. If
S ⊆ A is multiplicatively closed, then CS is the integral closure of AS in BS.

Proof. Clearly , CS is in the integral closure of AS in BS . Conversely, for any
x/s ∈ BS which is integral over AS we have(x

s

)n
+
a1

s

(x
s

)n−1

+ · · ·+ an
s

= 0.

This gives the following equality,

xn + a1x
n−1 + · · ·+ ans

n−1

sn
= 0 ∈ BS .

Thus there is a t ∈ S such that tn(xn + a1x
n−1 + · · ·+ ans

n−1) = 0 in B. That
is, tx is integral over A, i.e. tx ∈ C. Hence x

s = tx
ts ∈ CS .

Recall. As defined on page 55, an integral domain is called integrally closed if
it is integrally closed in the fraction field.

Proposition 68. Let A be a domain. The following are equivalent:

(1) A is integrally closed;

(2) Ap is integrally closed for all primes p in A;

(3) Am is integrally closed for all maximal m in A.

Proof. Let K be the fraction field of A, and let C be the integral closure of
A in K. Let f : A ↪→ C be the inclusion map. But f is an isomorphism
iff fp is an isomorphism for all p ∈ Spec(A) iff fm is an isomorphism for all
m ∈ Spec(A).

Remark. Let A ⊆ B be rings and A ⊆ C ⊆ B. Then C is the integral closure
of A in B if and only if the statement is true locally.

Definition. Let A ⊆ B be rings and I an ideal of A. Then we say x ∈ B is
integral over I if x satisfies

xn + a1x
n−1 + · · ·+ an = 0

with ai ∈ I.
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Lemma 69. Let A ⊆ C ⊆ B, A,B be rings, C the integral closure of A in B,
and I an ideal of A. Then the integral closure over I in B is

√
IC.

Proof. Choose x ∈ B integral over I. Then xn + a1x
n−1 + · · · + a0 = 0 where

ai ∈ I and thus
xn = −(a1x

n−1 + · · ·+ a0) ∈ IC.

I.e. x ∈
√
IC.

Now choose x ∈
√
IC. Then xn =

∑m
i=1 aixi with ai ∈ I, xi ∈ C. Let

M = A[x1, . . . , xm]. Then M is finite as an A-module, M is faithful, and
xn ∈M ⊆ IM . Therefore xn (and even more so x) is integral over I by Cayley
Hamilton.

Proposition 70. Let A ⊆ B be domains, A integrally closed in its fraction field
k, I an ideal of A and x ∈ B integral over I. Let

f(t) = tn + an−1
t + · · ·+ an ∈ k[t]

be the minimal polynomial of x over k. Then ai ∈
√
I.

Proof. First, x satisfies g(x) = 0 where g(t) = tm + b1t
m−1 + · · · + bm ∈ A[t],

bi ∈ I. This implies that f(t)|g(t). Next choose a field such that B ⊆ L and
f(t) = (t− x1)(t− x2) · · · (t− xn). Since f divides g, g(xi) = 0 for all i. Hence
each xi is integral over I and thus all ai ∈ k are integral over I. That is, ai ∈

√
I

by the previous lemma.

Lemma 71 ([1], prop 3.16). Let A→ B be a ring homomorphism and let p be
a prime ideal of A. Then p is the contraction of a prime ideal of B if and only
if pec = p .

Proof. If p = qc then pec = p. Conversely, if pec = p, let S be the image of Arp
in B. Then pe does not meet S, therefore its extension in S−1B is a proper ideal
and hence is contained in a maximal ideal m of S−1B. If q is the contraction
of m in B, then q is prime, q ⊇ pe and q ∩ S = ∅ (since qS−1B = m ( S−1B).
Hence qc = p.

Theorem 72 (Going-Down). Let A ⊆ B be domains, A integrally closed, and
B integral over A. Given a chain of primes p1 ⊇ p2 ⊇ · · · ⊇ pn in A and a
chain of primes Q1 ⊇ Q2 ⊇ · · · ⊇ Qm in B such that m < n and Qi∩A = pi for
i = 1, 2, . . . ,m, then the chain of primes in B can be extended to Q1 ⊇ . . . ⊇ Qn
such that Qi ∩A = pi for i = 1, 2, . . . , n

Proof. It is enough to show when n = 2 and m = 1. Further, by lemma 71 we
only need to show p2BQ1

∩A = p2.
It is easy to see that p2BQ1 ∩ A ⊇ p2. Conversely, for x ∈ p2BQ1 , x = y

s
where y ∈ p2B and s ∈ B − Q1. By lemma 69 we have that y is integral over
p2. Thus by prop 70 the minimal polynomial of y over K (f.f. of A) is

f(t) = tn + an−1
t + · · ·+ an ∈ K[t]
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with ai ∈
√
p2 = p2. Since y = sx, f(sx) = 0. Thus s satisfies g(t) = 0 where

g(t) = f(tx). Let

h(t) =
1

xn
g(t) = tn + v1t

n−1 + · · ·+ vn;

h(s) = 0 and s = 1
xy. This implies that h(t) is the minimal polynomial of s

over K. Hence vi ∈ A by previous prop (I = (1)). But vi = ai/x
i. Hence

xivi = ai ∈ p2. If x /∈ p2 then vi ∈ p2 implies that s is integral over p2. Hence
s ∈
√
p2B ⊆

√
Q1 = Q1. A contradiction. So x ∈ p2 and we have equality.

Theorem 73 (Dimension of Finitely Generated k-algebras). Let R be a finitely
generated k-algebra (k a field). Let R be integral over a subring k[y1, . . . , yn], yi
algebraically independent over k. Then

(1) every chain of primes in R has length less than or equal to n. In particular,
dim(R) 6 n;

(2) if R is a domain, then every saturated chain of primes has length n;

(3) in particular, dim(k[y1, . . . , yn]) = n. So dim(R) = n.

Recall. Polynomial rings are UFD’s; every polynomial f ∈ k[x1, x2, . . . , xn] is
uniquely (up to order and units) a product fa11 fa22 · · · f

ak
k , where fi are irre-

ducible polynomials. In particular, if f is irreducible and f |g ·h then f |g or f |h.
I.e. (f) is a prime ideal. Consequently, if R is a polynomial ring and Q is a
prime minimal over (0), but Q 6= (0), then Q = (f).

Lemma 74. Suppose R = k[x1, . . . , xn], f ∈ R and f 6= 0. Then R/(f) is
integral over a polynomial ring in n− 1 variables.

Proof. Use a change of variables (lemma 62) so that with out loss of generality,

f = xln + xl−1
n g1(x1, . . . , xn−1) + · · ·+ gl(x1, . . . , xn−1).

Then R/(f) is integral over k[x1, . . . , xn−1] ⊆ R/(f); xi = xi + (f). To show
there are no relations on the xi, we need to show there does not exist a non
zero g ∈ R in n − 1 variables such that g(x1, . . . , xn−1) 6= 0 in R/(f). But
g(x1, . . . , xn−1) = g(x1, . . . , xn−1). So the above holds if and only if g 6= 0 such
that f |g in k[x1, . . . , xn]. But for all h ∈ R, f · h always has an xln term. Hence
such a g does not exist.

Proof of Theorem 73. (1): Induct on n. Consider a chain of primes

Q0 ( Q1 ( · · · ( Qm

in R. By incomparability (theorem 57), there is a chain of primes

qo ( q1 ( · · · ( qm



5 Examples 67

in k[x1, . . . , xn] where qi = Qi ∩ k[x1, . . . , xn]. With out loss of generality,
we can assume q0 = 0. Further, there exists a non zero element g ∈ q1. If
g = ga11 · · · g

at
t , gj irreducible, then (0) 6= (gi) ⊆ q1 for some i. Thus we may

also assume that q1 = (g) for some irreducible element g.
By the lemma, k[x1, . . . , xn]/(g) is integral over a polynomial ring in n − 1

variables. Since
0 = q1/q1 ( q2/q1 ( · · · ( qm/q1

is chain of primes in k[x1, . . . , xn]/(g), by induction m − 1 6 n − 1. Hence
m 6 n.

(2): Again, induct on n. Consider a saturated chain of primes

Q0 ( Q1 ( · · · ( Qm

in R. By (1), m 6 n. As before, if we contracting to A = k[x1, . . . , xn], we get
a chain of primes

qo ( q1 ( · · · ( qm

in k[x1, . . . , xn] where qi = Qi ∩ A. Because k[x1, . . . , xn] is integrally closed,
going-down holds on A ⊆ R.

Therefore there does not exist a prime p in A between (0) and q1. (This
would not allow our original chain to be saturated.) As above, let q1 = (f)
for some irreducible f ∈ A. Then, by the above lemma, we have the following
integral extensions:

k[z1, . . . , zn−1] ⊆ k[x1, . . . , xn]/(f) ⊆ R/Q1

where zi are indeterminants over k. By induction, every saturated chain of
primes in R/Q1 has length n− 1. This applies to

0 = Q1/Q1 ( Q2/Q1 ( · · · ( Qm/Q1.

Hence n− 1 = m− 1, that is, n = m.
(3): Combine (1) and (2).

5 Examples

Example 67. Let R = k[x, y, z]/(x) ∩ (y, z). The minimal primes of R are xR
and (y, z)R. Notice that

R/xR ' k[x, y, z]/(x) ' k[y, z].

So saturated chains of primes ending in xR will have length 2. Also,

R/(y, z)R ' k[x, y, z]/(y, z) ' k[x].

So saturated chains of primes ending (y, z)R have length 1.

Example 68. Let R = k[x3, y3, z3, x2y, x2z, xyz]. Notice that R is integral
over k[x, y, z], so dim(R) = 3.
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Example 69. Let R = k[x, y, z, xt, yt, zt]. Notice that the extension R ⊆
k[x, y, z, t] is not integral (there is not integral relation for t). By Noether’s nor-
malization lemma (theorem 61), there exists an integral extension k[y1, . . . , yd] ⊆
R where the yi’s are algebraically independent over k. Let L = k(y1, . . . , yd)
and Q(R) be the quotient field of R. Since Q(R) is algebraic over L (check
this), y1, . . . , yd form a transcendence basis for Q(R). Since all transcendence
basis’ have the same cardinality, if we can find a transcendence basis for Q(R),
we can determine the dimension of R. (For more on transcendence basis’, see
appendix A1 in [2])

Notice that Q(R) = k(x, y, z, t). Since x, y, z, t are algebraically independent
over k, the elements for a transcendence basis and thus dim(R) = 4.

Example 70. Let R = k[xs, ys, zs, xt, yt, zt]. Again, k[x, y, z, s, t] is not inte-
gral over k. So consider Q(R) = k(xs, ys, zs, ts ). So dim(R) = 4.

Example 71. Let R = k[x2y, y2z, xz]. Notice that

(x2y)2(xz)

y2z
= x5,

(y2z)2(x2y)

(xz)2
= y5,

(xz)4(y2z)

(x2y)2
= z5.

Since these are algebraically independent elements of Q(R) and the dimension
is bounded by 3, dim(R) = 3.

Proposition 75. Let A ⊆ B be rings and b ∈ B. The following are equivalent:

(1) b is integral over A;

(2) the image of b in B/P is integral over A/(P ∩A) for all P in Spec(B);

(3) the image of b in B/P is integral over A/(P ∩ A) for all P in Spec(B)
minimal over (0).

Proof. (1) ⇒ (2) ⇒ (3) is clear. For (3) ⇒ (1), assume b is not integral over A.
Let W = {f(b) | f ∈ A[T ], f monic}. W is multiplicatively closed and 0 is not
in W by assumption. Hence there exists a prime ideal Q ∈ Spec(B) such that
Q∩W = ∅. Hence there exists a minimal prime P ∈ Spec(B) such that P does
not meet W . Then in B/P , b is not integral over A/P ∩ A since f(b) 6= 0 for
all monic f ∈ (A/P ∩A) [T ].



Chapter 7

Krull’s Theorems and
Dedekind Domains

1 Krull’s Theorems

Definition. Let R be a ring, p ∈ Spec(R). Then the height of p, denoted ht(p),
is:

sup{n ∈ N : ∃ p0 ( p1 ( . . . ( pn = p}.

Note that ht(p) = dimR/p.

Theorem 76. Let k be a field and let R be a finitely generated k-algebra. As-
sume R is a domain, then

ht(p) + dimR/p = dimR

for all p ∈ Spec(R).

Proof. Set n = dimR. We proved that all saturated chains of primes have
length n. Set s = dimR/p and let

p

p
(

p1

p
( . . . (

ps
p

be a saturated chain in R/p. Set t = ht(p) and let

0 = q0 ( q1 ( . . . ( qt = p

be saturated. Then:

0 = q0 ( q1 ( . . . ( qt = p ( p1 ( . . . ( ps

is saturated of length s+ t, and hence s+ t = n.
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Example 1. Consider the map

ϕ : k[a, b, c, d]� k[x2y2, y3u3v3, xy2uv, x3y5u2v2].

Then kerϕ = p is prime. What is dim k[a, b, c, d]p? By Theorem 76 we have

dim k[a, b, c, d]p = ht(p) = dim k[a, b, c, d]− dim k[a, b, c, d]

p
= 4− 2 = 2.

Theorem 77 (Krull’s Intersection Theorem). Let R be a Noetherian ring and
let I ⊆ R be an ideal. Then there exists i ∈ I such that

(1− i)
⋂
n≥1

In = 0.

In particular, if either I ⊆ Jac(R) or R is a domain,⋂
n≥1

In = 0.

Proof. Set J :=
⋂
n≥1 I

n. We have that JI = J , in fact let JI = q1∩ . . .∩qn be
a primary decomposition. It is enough to show that J ⊆ qi for all i = 1, . . . , n.
There are two cases: if I ⊆ √qi, then IN ⊆ qi for N >> 0 and hence J ⊆
IN ⊆ qi. Instead, if I 6⊆ √qi, we have J ⊆ qi since qi is primary. Therefore we
conclude by NAK.

Definition. If p ∈ Spec(R) is prime, then

p(n) := pnRp ∩R

is the p-primary component of pn and it is called n-th symbolic power of p. In
terms of the primary decomposition it is

pn = p(n) ∩ qi1 ∩ . . . ∩ qin

where p ( √qij .

Theorem 78 (Krull’s Principal Ideal Theorem and Height Theorem). Let R
be a Noetherian ring. Then:

(1) If p is a minimal prime over a principal ideal (x), then ht(p) ≤ 1.

(2) If p is minimal over an ideal (x1, . . . , xn), then ht(p) ≤ n.

Proof. (1) Assume p is minimal over (x) but ht(p) ≥ 2. Replace R with Rp, so
that without loss of generality we can assume p = m the maximal ideal of a local
ring R. By minimality over (x) we have that R/xR is Artinian. Since ht(m) ≥ 2
there exists a prime q such that q ( m and dimRq > 0. Let q(n) = qnRq ∩R be
the n-th symbolic power and note that q(n) is q-primary for every n. Also we
have

q = q(1) ⊇ q(2) ⊇ . . . ⊇ q(n) ⊇ q(n+1) ⊇ . . .
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Going modulo (x) we get a descending chain

q

(x)
=

q(1)

(x)
⊇ q(2) + (x)

(x)
⊇ . . . ⊇ q(n) + (x)

(x)
⊇ q(n+1) + (x)

(x)
⊇ . . .

that must stabilize. In other words there exists N >> 0 such that (q(N) +(x)) =
(q(N+1) + (x)) = . . . and in particular q(N) ⊆ q(N+1) + (x). Let s ∈ q(N) and
write it as s = rx + t, where t ∈ q(N+1). Then rx = s − t ∈ q(N) and, using
that x /∈ q =

√
q(N) because m is minimal over (x) and q(N) is q-primary, we

get r ∈ q(N). This means s ∈ xq(N) + q(N+1) and therefore

q(N) = xq(N) + q(N+1).

By NAK we get q(N) = q(N+1). Now localize at q:

qNRq = q(N)Rq = q(N+1)Rq = qN+1Rq.

But now in Rq apply NAK to q·qNRq = qNRq to get qNRq = 0, i.e. dimRq = 0.
This is a contradiction, hence ht(m) ≤ 1.
(2) Induct on n. If n = 1 it is just (1). Assume now n > 1 and let p be minimal
over (x1, . . . , xn). We can localize at p, hence without loss of generality R is
local, p = m and

√
(x1, . . . , xn) = m. Choose any prime q ( m such that no

other prime is between q and m. Note that since R is Noetherian such prime
exists unless ht(m) = 0, and in this case the theorem is proved. By minimality
of m there exists xi /∈ q. Without loss of generality we can assume xn /∈ q. By
choice m is minimal over q+(xn), hence

√
q + (xn) = m. This means that there

exists N >> 0 such that

xN1 = r1xn + y1, . . . , x
N
n−1 = rn−1xn + yn−1,

where yi ∈ q. Notice that (y1, . . . , yn−1) ⊆ q.

Claim. q is minimal over (y1, . . . , yn−1).

Proof of the Claim. If not there exists a prime p such that

(y1, . . . , yn−1) ⊆ p ( q ( m,

but going modulo (y1, . . . , yn−1) we get ht(m/(y1, . . . , yn−1)) ≥ 2, while m is
minimal over (y1, . . . , yn−1, xn) since

m =
√

(x1, . . . , xn) =
√

(y1, . . . , yn−1, xn) ⊆ m.

This picture contradicts (1), hence q is minimal over (y1, . . . , yn−1).

By induction ht(q) ≤ n − 1. Since q was an arbitrary prime below m with
no other primes in between we have ht(m) ≤ n.

Corollary 79. Let R be a Noetherian ring and let p ∈ Spec(R). Then ht(p) < ∞.

Proof. Since R is Noetherian p is finitely generated, say p = (x1, . . . , xn). Then
ht(p) ≤ n.

Corollary 80. Let R be a Noetherian ring. Then Spec(R) satisfies DCC.
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2 Dedekind Domains

Definition. Let D be a Noetherian integrally closed domain with dimD = 1.
Then D is called a Dedekind domain.

Example 2. (1) Z is a Dedekind domain.

(2) k[x], where k is a field, is a Dedekind domain.

(3) Z[i] is a Dedekind domain.

Proposition 81. Let D be a Dedekind domain. Then every ideal I can be
written uniquely (up to order) as a product I = q1 . . . qn, where all qi’s are
primary ideals and pi =

√
qi 6=

√
qj = pj if i 6= j.

Proof. Without loss of generality we can assume I 6= (0). Let I = q1 ∩ . . . ∩ qn
be a primary decomposition. Since dimD = 1 we have

√
qi = pi are all maximal

ideals, hence qi + qj = D for all i 6= j. By Chinese Remainder Theorem we get
I = q1 . . . qn. Conversely assume I = q1 . . . qn, with qi primary and pi 6= pj if
i 6= j. Again by Chinese Remainder Theorem I = q1∩ . . .∩qn and by Corollary
3 we get qi = IRpi

∩R. Hence they are unique.

Proposition 82 (Structure of local Dedekind domains). Let (D,m) be a local
Dedekind domain. Then:

(1) There exists t ∈ D such that m = (t).

(2) Every non zero ideal is of the form mn for some n ≥ 0 (m0 = D).

Proof. (1) Choose any x ∈ m, x 6= 0. Then Ass(D/xD) = {m}, therefore there
exists an embedding

0→ D/m→ D/xD
1 7→ ȳ

This means (x : y) = m and thus y
xm ⊆ D. But y

xm is an ideal, and there are
two cases:

• y
xm ⊆ m, in which case y

x is integral over D by the determinant trick.
But D is integrally closed, hence y

x = z ∈ D, i.e. y = zx. Therefore
1 ∈ (x : y) = (x : zx) = m, and this is a contradiction.

• y
xm = D. Then there exists t ∈ m such that y

x t = 1, i.e. x = ty. This
means

m = (x : y) = (ty : y) = (t).

(2) Let I be a non zero ideal. By Krull’s Intersection Theorem

I 6⊆
⋂
n≥0

mn = (0).
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Therefore there exists n ≥ 0 such that I ⊆ mn = (tn) but I 6⊆ mn+1 = (tn+1),
where t is as in (1). We can write I = tnJ , where J is the ideal I : tn. If
J ⊆ m = (t), then I ⊆ tn(t) = (tn+1), and this is a contradiction. Hence J = D
and I = (tn).

Remark. Let R be a ring and let q be a p-primary ideal. Then qRp ∩R = q. In
fact suppose r ∈ qRp ∩R, then there exists s /∈ p such that sr ∈ q. This implies
r ∈ q since q is primary.

Theorem 83. Let D be a Dedekind domain. Then every ideal can be written
uniquely (up to order) in the form

I = pn1
1 . . . pns

s ,

where p1, . . . , ps are distinct primes.

Proof. By Proposition 81 there exist unique q1, . . . , qs primary ideals, with√
qi = pi, such that I = q1 . . . qs. Furthermore

qi = IDpi
∩D = pni

i Dpi
∩D,

where the last equality follows from Proposition 82 (2). It is enough to show
that pni

i = pni
i Dpi

∩D. But
√
pni
i = pi maximal, hence pni is primary and the

theorem follows by the previous Remark.



Chapter 8

Completions and
Artin-Rees Lemma

1 Inverse Limits and Completions

Example 3. Let R be a Noetherian ring, let I ⊆ R be an ideal and assume⋂
n≥0 I

n = 0 (for instance if R is a domain, or I ⊆ Jac(R)). If x, y ∈ R set
v(x, y) = sup{n : x− y ∈ In} and define

d(x, y) :=
1

2v(x,y)
.

Claim. (R, d) is a metric space.

Proof of the Claim. Clearly d(x, y) = d(y, x) since if J is any ideal, then x−y ∈
J if and only if y − x ∈ J . Also d(x, y) = 0 if and only if x − y = 0 since⋂
n≥0 I

n = 0. Finally assume

1

2k
= d(x, y) and

1

2l
= d(y, z).

This means x− y ∈ Ik r Ik+1 and y − z ∈ I l r I l+1. Therefore

x− z = (x− y) + (y − z) ∈ Imin{k,l}.

Therefore

d(x, z) ≤ 1

2min{k,l} ≤
1

2k
+

1

2l
= d(x, y) + d(y, z).

Remark. (1) What are the open balls Bε(x) in this metric space? Without
loss of generality assume ε = 1

2k , then

B 1

2k
(x) = {y ∈ R : d(x, y) < 1

2k } = {y ∈ R : d(x, y) ≤ 1
2k+1 } =

= {y ∈ R : x− y ∈ Ik+1} = x+ Ik+1.
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(2) If we put the product topology on R×R, then both

+ : R×R→ R and · : R×R→ R

are continuous. In fact let x + Ik be a basic open set around x ∈ R and
let (y, z) ∈ +−1(x+ Ik). This means y + z ∈ x+ Ik, and therefore

(y + Ik) + (z + Ik) ⊆ x+ Ik.

Hence +−1(x + Ik) contains (y + Ik) × (z + Ik) around (y, z), i.e. + is
continuous. Similarly for the product.

Definition. Let R and I ⊆ R be as above. The metric d defines a topology
on R called I-adic topology . Also a null Cauchy sequence {xn} is a Cauchy
sequence (with respect to the metric d) such that for all ε > 0 there exists
k ∈ N such that for n ≥ k d(xn, 0) < ε. We can now form a new object

R̂I := {Cauchy sequences in R}/{null Cauchy sequences in R}.

We call R̂I the completion of R with respect to I and it is obtained from R by
formally adjoining the ”limit points”. Also R̂I is a ring since R itself is a ring.

Remark. More explicitly, how does a Cauchy sequence in (R, d) look like? For
a sequence {xn} in R to be Cauchy means that for all ε = 1

2l there exists k ∈ N
such that for all n,m ≥ k we get

d(xn, xm) <
1

2l
⇐⇒ xn − xm ∈ I l+1 ⇐⇒ xn + I l+1 = xm + I l+1.

So let yl+1 +I l+1 be the coset which is in the stable value of xn+I l+1 as n→∞.
Note that under the natural map πl : R/I l+1 � R/I l we have

πl+1(yl+1 + I l+1) = yl + I l.

Algebraically, this is an inverse limit.

Definition. Let R be a ring and {Mn}∞n=1 be a collection of R-modules with
maps ϕn+1 : Mn+1 →Mn. Then the inverse limit is

lim
←−

Mn := ker

(
D :

∏
n

Mn →
∏
n

Mn

)
,

where D is the R-homomorphism defined as follows:

D((m1,m2, . . .)) = (m1 − ϕ2(m2),m2 − ϕ3(m3), . . .).

Remark. Notice that

R̂I ' lim
←−

R/In,
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where πn+1 : R/In+1 → R/In is the natural projection map. In fact let {xn}
be a Cauchy sequence in the I-adic topology and recall that for large m the
coset xm + In has a stable value. Choose a representative yn + In, so that
yn+ In = yn+1 + In for all n. Hence, corresponding to {xn} there is an element
in lim
←−

R/In, i.e. a sequence of cosets

. . . // yn+2 + In+2 πn+2 // yn+1 + In+1 πn+1 // yn + In // . . .

In this correspondence, null Cauchy sequences correspond to the zero element in
lim
←−

R/In. Moreover, this correspondence preserves the ring operations. Finally,

given an element y ∈ lim
←−

R/In, we have y = {(yn + In)n} ∈
∏
nR/I

n and also

yn+1 − yn ∈ In for all n,

i.e. {yn} is a Cauchy sequence.

Definition. Let R and I ⊆ R be as above and let M be a R-module. We can
define a pseudo-metric on M using InM instead of In (it will be a metric if⋂
n≥0 I

nM = 0). Then the completion of M with respect to I is

M̂ I = lim
←−

M/InM.

Proposition 84. Let R be a ring and let I ⊆ R be an ideal such that
⋂
n≥0 I

n =
0. Then

IR̂I ⊆ Jac(R̂I).

Proof. It is enough to show that 1− x is a unit in R̂I for all x ∈ I. Notice that

1

1− x
=
∑
i≥0

xi

and define sn =
∑n
i=0 x

i. Then {sn} is a Cauchy sequence since sn+1 − sn =

xn+1 ∈ In+1, hence there exists s ∈ R̂I which is the limit of sn, i.e. s − sn ∈
InR̂I . Therefore

(1− x)s− (1− x)sn = (1− x)s− (1− xn+1) ∈ InR̂I .

Since xn+1 ∈ In+1 we get

(1− x)s− 1 ∈ InR̂I for all n

and hence

(1− x)s = 1 in R̂I .
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2 Artin-Rees Lemma

Definition. A ring S is (non-negatively) graded if S =
⊕

i≥0 Si as an abelian
group, and Si · Sj ⊆ Si+j for all i, j ≥ 0. In particular S0 is a ring and each
graded piece Sj is an S0-module. An S-module M is graded if it can be written
in the form M =

⊕
jMj , with SiMj ⊆Mi+j .

Example 4. (1) S = A[x1, . . . , xn] is a graded ring with Sj the A-module
spanned by the homogeneous polynomials of degree j.

(2) If R is a ring and I ⊆ R is an ideal we define

R(I) := R⊕ I ⊕ I2 ⊕ · · ·

the Rees Ring of I. One can artificially put a variable t in to keep track
of the grading. In this way:

R(I) ' R⊕ It⊕ I2t2 ⊕ . . . = R[It] ⊆ R[t].

Remark. Let R be a ring and let I ⊆ R be an ideal. If R is Noetherian, so is
R(I).

Proof. By assumption I is finitely generated, say I = (x1, . . . , xn). Then

R(I) = R[x1t, . . . , xnt] ⊆ R[t].

Hence there exists a surjection

R[T1, . . . , Tn]� R(I)
Ti 7→ xit

By the Hilbert Basis Theorem 37R[T1, . . . , Tn] is Noetherian, and so isR(I).

Definition. Let R be a ring and let M be a finitely generated R-module. Define

M(I) := M ⊕ IM ⊕ I2M ⊕ . . .

Then M(I) has the structure of a graded R(I)-module if, given itn ∈ Intn ⊆
R(I) and m ∈ IjM , we set

(itn)m = im ∈ In+jM.

Remark. Notice that if M = Rm1 + . . .+Rmk, then

M(I) = R(I)m1 + . . .+R(I)mk.

Theorem 85 (Artin-Rees Lemma). Let R be a Noetherian ring, let I ⊆ R be an
ideal and let N ⊆ M be finitely generated R-modules. Then there exists k ∈ N
such that for all n ≥ K

InM ∩N = In−k(IkM ∩N).
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Proof. Consider R(I) = R[It] and M(I) =
⊕

j≥0 I
jM as above. Define N to

be the following R(I) submodule of M(I):

N = N ⊕ (IM ∩N)⊕ (I2M ∩N)⊕ . . .

Notice that I(InM ∩ N) ⊆ In+1M ∩ N , so that M is a R(I)-module. Since
R(I) is Noetherian (by Remark 2) andM(I) is finitely generated, so is N . Say
N = R(I)xi+. . .+R(I)xl, with xi ∈ N , and xi =

∑
j xij , where xij ∈ IjM∩N ,

and all but finitely many are zero. So N =
∑
i,j R(I)xij , and without loss of

generality we can assume x1, . . . , xl are homogeneous, say deg xi = ni, i.e.
xi ∈ IniM ∩N . Let k = max{n1, . . . , nl}.
Claim. With this choice of k we have InM ∩N = In−k(IkM ∩N) for all n ≥ k.

Proof of the Claim. Notice that In−k(IkM ∩ N) ⊆ InM ∩ N for all n ≥ k.
Conversely let n ≥ k and let u ∈ InM ∩N . Write it as

u =

l∑
i=1

rixi,

where ri ∈ R(I), and without loss of generality they can be chosen homogeneous.
Hence deg ri = n− ni, that is

ri ∈ R(I)n−ni
= In−nitn−ni .

This means that

u ∈
l∑
i=1

In−nixi ⊆
l∑
i=1

In−ni(Ini M ∩N) ⊆ In−k(IkM ∩N).

3 Properties of Completions

Definition. Let R be a ring and let {An} and {Bn} be inverse limit systems
of R-modules. We say that α : {An} → {Bn} is a morphism of inverse limits
(α = {αn}) if:

An+1

��

αn+1 // Bn+1

��
An

αn // Bn

where each αi is a R-homomorphism. In this case α induces a homomorphism

lim
←−

An
α−→ lim
←−

Bn.
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Lemma 86 (Snake Lemma). Let R be a ring and suppose we have the following
exact diagram of R-modules:

A

f
��

α // B

g

��

β // C

h
��

// 0

0 // A′
α′ // B′

β′ // C ′

Then there exists a morphism δ : kerh→ cokerf such that

ker f
α // ker g

β // kerh
δ // cokerf

α′ // coker g
β′ // coker h

is exact. Furthermore, if α is one-to one, then so is (ker f
α→ ker g). Similarly,

if β′ is surjective so is (coker g
β′→ coker h).

Proof. Diagram chasing.

Lemma 87. Let {An}, {Bn} and {Cn} be inverse limit systems and assume

that {An}
α→ {Bn}

β→ {Cn} are such that

0 // An
αn // Bn

βn // Cn // 0

are all short exact sequences. Then

(1) The following sequence is exact

0 // lim
←−

An
α // lim

←−
Bn

β // lim
←−

Cn

(2) If An+1 → An is surjective for all n, then β is surjective.

Proof. Let dA :
∏
An →

∏
An be the map such that

lim
←−

An = ker dA.

Similarly define dB and dC for {Bn} and {Cn}. We have the following row-exact
diagram:

0 //
∏

An

dA

��

αn //
∏

Bn

dB

��

βn //
∏

Cn

dC

��

// 0

0 //
∏

An
αn //

∏
Bn

βn //
∏

Cn // 0

By Snake Lemma we get an exact sequence

0 // lim
←−

An
α // lim

←−
Bn

β // lim
←−

Cn // coker dA.

This proves (1). Also, if An+1 → An is surjective for all n, we have coker dA = 0,
and hence (2) follows.
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Definition. Let R be a ring and let I ⊆ R be an ideal. A sequence {In} of
ideals I1 ⊇ I2 ⊇ . . . is said to be cofinal with {In} if for all n there exists k such
that Ik ⊆ In, and conversely for all n there exists k such that Ik ⊆ In.

Remark. If {In} is cofinal with {In}, the I-adic topology {x+ In} is the same
as the topology determined by taking neighborhood basis of x to be {x + In}.
So the completions are isomorphic, i.e.

R̂I = lim
←−

R/In ' lim
←−

R/In.

Likewise, for any chain M1 ⊇ M2 ⊇ . . . of R-modules cofinal with {InM}, we
get

M̂ I = lim
←−

M/InM ' lim
←−

M/Mn.

Lemma 88. Let R → S be a ring homomorphism. Then S is flat over R
if and only if, given finitely generated R modules M and N and an injection

0→ N
i→M , then 0→ N ⊗R S

i⊗1→ M ⊗R S is exact.

Proof. If S is flat, then by definition 0 → N ⊗R S
i⊗1→ M ⊗R S is exact for

all injections 0 → N
i→ M , with M and N finitely generated R-modules.

Conversely, assume S is not flat. Then there exists an injection 0 → N
i→ M

such that 0→ N⊗RS
i⊗1→ M⊗RS is not exact. Suppose i⊗1

(∑l
i=1 ni ⊗ si

)
= 0

and let N0 := Rn1 + . . . Rnl ⊆ N . Then 0 → N0
i′→ M is exact and i′ ⊗

1
(∑l

i=1 ni ⊗ si
)

= 0. By definition, M ⊗R S = R[m, s : m ∈ M, s ∈ S]/Z,

where Z ⊆ R[m, s : m ∈M, s ∈ S] is a submodule. Therefore

i′ ⊗ 1

(
l∑
i=1

ni ⊗ si

)
= 0 ⇐⇒

l∑
i=1

i′(ni)⊗ si = 0 ⇐⇒
l∑
i=1

[i′(ni), si] ∈ Z.

Hence there exist rj ∈ R and zj ∈ Z such that
∑l
i=1[i′(ni), si] =

∑
j rjzj . Let

M0 ⊆ M be the submodule generated over R by i′(ni) and all elements of M
appearing in the zj ’s. Then

0 // N0
// M0

is exact, and N0 and M0 are finitely generated R-modules. By assumption,

since i′⊗1
(∑l

i=1 ni ⊗ si
)

= 0, we have
∑l
i=1 ni⊗si = 0 in N0⊗RS, and hence

it is zero in N ⊗R S.

Theorem 89. Let R be a Noetherian ring and let I ⊆ R be an ideal such that⋂
n≥0 I

n = 0. Then

(1) If we have a short exact sequence of R-modules

0 // N
α // M

β // L // 0,
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the following sequence

0 // N̂ I α // M̂ I β // L̂I // 0

is also exact.

(2) If M is finitely generated, then

M̂ I 'M ⊗R R̂I .

(3) The map R→ R̂I is flat.

Proof. (1) Tensor the short exact sequence with R/In:

N

InN

αn // M

InM

βn // L

InL
// 0.

This sequence is exact since tensor product is right exact. Starting from this
sequence we get the following exact diagram (considering the kernels of the two
surjections)

0 // N

InM ∩N
αn // M

InM

βn // L

InL
// 0

0 // N

In+1M ∩N

πn

OO

αn // M

In+1M

πn

OO

βn // L

InL

πn

OO

// 0

This gives a short exact sequence of inverse limits and, moreover, the natural
maps πn are all surjective, therefore, from Lemma 1, we get the following short
exact sequence

0 // lim
←−

N

InM ∩N
// M̂ I // L̂I // 0.

Clearly, for all n ∈ N, InN ⊆ InM ∩N . Finally, by Artin-Rees Lemma, there
exists k such that InM ∩ N ⊆ In−kN for all n ≥ k. Therefore {InM ∩ N} is
cofinal with {InN} and hence

lim
←−

N

InM ∩N
' lim
←−

N

InN
= N̂ I .

(2) Notice that we have always a map

M ⊗R R̂I → M̂ I ,

and if M is free it is clearly an isomorphism. Since M is finitely generated there
exists a short exact sequence

0 // K // Rn
π // M // 0,
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where K = kerπ. Since R is Noetherian, K is finitely generated, therefore there
exists an exact sequence

Rm
α // Rn

π // M // 0.

By (1) we get the following exact sequence

(R̂I)m
α̂ // (R̂I)n

π̂ // M̂ I // 0

Rm ⊗R R̂I

'

OO

// Rn ⊗R R̂I

'

OO

// M ⊗R R̂I

OO

// 0

and (2) follows by Five Lemma.
(3) Assume 0→ N →M is an exact sequence of finitely generated R-modules.
Then, by (1) and (2), we get

0 // N̂ I // M̂ I

is exact, and therefore the map R→ R̂I is flat by Lemma 88.

Theorem 90. Let R be a Noetherian ring and let I ⊆ R be an ideal such that⋂
n≥1 I

n = 0. Then R̂I is Noetherian.

Proof. One can prove that, if I = (a1, . . . , al), then

R̂I ' R[[x1, . . . , xl]]

(x1 − a1, . . . , xl − al)
.

Then it suffices to prove that R[[x1, . . . , xl]] is Noetherian. Induct on l, so that
it is enough to show that R[[x]] is Noetherian. We will show that every prime
p ∈ Spec(R[[x]]) is finitely generated. Define p0 ⊆ R as p0 := {g(0) : g ∈ p}
(the constant terms). Then p0 ⊆ R is finitely generated, say p0 = (a1, . . . , an).
Then there exists fi ∈ p such that fi(0) = ai for all i. Two cases are possible:

• If x /∈ p. In this case we claim that p = (f1, . . . , fn), so that p is finitely
generated. Let g ∈ p, so that g(0) ∈ p0 and hence

g(0) =

n∑
i=1

ri0ai,

for some r10, . . . , rn0 ∈ R. Then

g(x)−
n∑
i=1

ri0fi(x) = xg1(x).

But p is prime and x /∈ p, hence g1 ∈ p. Repeat the process to get

g1(x)−
n∑
i=1

ri1fi(x) = xg2(x),
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so that

g(x)−
n∑
i=1

(ri0 + ri1x)fi(x) = x2g2(x).

Inductively, there exist rij ∈ R such that

g(x)−
n∑
i=1

(ri0 + ri1x+ . . .+ xjrij)fi(x) = xj+1gj+1(x) for all j.

Therefore

g(x)−
n∑
i=1

(

∞∑
j=1

xjrij)fi(x) ∈
⋂
j≥0

(jn) = 0,

that is g ∈ p.

• If x ∈ p, then for g(x) ∈ p write g(x) = g(0) + xh(x), for some h(x) ∈
R[[x]]. This implies g(0) ∈ p. But then

(p0, x) ⊆ p ⊆ (p0, x),

i.e. p = (p0, x) = (a1, . . . , an, x) is finitely generated.
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Neother Normalization Lemma, 67
nilpotent, 7
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Noetherian, 44
non-zero divisor, 28

primary, 54
primary decomposition, 55
prime, 6
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principal ideal domain, 14

quotient module, 21
quotient ring, 4

reduced, 7
Rees Ring, 86
restriction of scalars, 20
right exactness, 26

short exact sequence, 25
submodule, 21
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unique factorization domain, 13
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