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1. BASICS AND NOTATION

Unless otherwise specified, all rings involved are commutative Noetherian with identity,
and all ring homomorphisms are unitary.

Recall that a local ring (R, m) ring is said to have equal characteristic (or to be equi-
characteristic) if char(R) = char(R/m). In these notes, most of the time we will consider
rings of equal characteristic p > 0 where p is, of course, a prime integer.

Remark 1.1. Since char(R/m) always divides char(R), if the latter is a prime, then R is nec-
essarily equi-characteristic. In fact, if R is not necessarily local and has prime characteristic
p > 0, then every localization of R must have equal characteristic p. Moreover, the condition
that char(R) is a prime p is equivalent to the fact that R contains a field of characteristic
p. In fact, char(R) = p means that the natural map Z — R sending 17 — 1g has kernel
pZ. Therefore R contains the finite field Z/pZ = F,. Conversely, if R contains a field ¢ of
characteristic p > 0, then char(R) = p is readily seen to be forced.

1.1. The Frobenius map. Let R be a ring of prime characteristic p > 0. The Frobenius
endomorphism on R is the map

F:R— R
r———7P
Lemma 1.2. The Frobenius map is a ring homomorphism.

Proof. Let r,s € R. Since R is commutative, it is clear that F(rs) = (rs)? = rPs? =
F(r)F(s). The key point is that it is additive:

p

F(r+s) = (r—l—s)pzz <p> P =P 4 P = F(r) + F(s),

i
i=0

where the third equality follows from the fact that the integer (17’) is divisible by p for all

0<2<p,and p=20in R. [

Here are some examples.

Examples 1.3. (1) Let R =T, be the field with p elements. Then F' is the identity. In
particular, it is an isomorphism.
(2) Let R = F,[t], or R = F,(t) = Frac(F,[t]). Then F' is injective but not surjective;
for instance, ¢ is not in the image. We say that a ring is perfect if F' is a surjective
homomorphism.

Exercise 1.4. Prove that, if R is a Noetherian perfect ring, then R is a direct product of
fields.

Regarding injectivity, instead, the following is easy to prove.

Proposition 1.5. Let R be a ring of prime characteristic p > 0. Then R is reduced if and
only if F': R — R 1is injective.

Proof. Assume R is reduced. If F(r) = r? = 0, then r = 0. So F' is injective. Conversely,

assume that F is injective. Let r € R and assume that »V = 0 for some N € N*. Let

e = inf{e/ € N | *" = 0}, which is finite by assumption. If e > 1, then set s = r*" . By
4



definition of e, we have s # 0, but F(s) = r?" = 0, contradicting our assumptions. Therefore
e = 0, which means that r»" = r = 0. This completes the proof. O

We now define Frobenius powers of an ideal I C R:
1P = (2P |z € 1).

Observe that IP! = [(I)R, where F is the Frobenius map. For this reason, if I = (f1,..., f;),
one has IP = (fF ..., 7).

Exercise 1.6. Assume that R contains Q. Let I C R be an ideal, and let n € N*. Define
I = (2" | x € I). Prove that I = I" the ordinary power of I.

Notation 1.7. For a ring R of prime characteristic p > 0, we use ¢,¢’,q¢”,... to denote
powers p¢,p¢, p¢ ... of p, for e, e, e” € N. For an ideal I, we then write I for I¥° etc.

1.2. Frobenius push-forward. Given any ring homomorphism f : R — S, one can view S
as an R-module by restriction of scalars. In other words, given r € R and s € S, the action
r-s= f(r)s makes S into an R-module.

In the case of the Frobenius map F': R — R, the action that makes R into an R-module
(via F') can be confused with the standard action. For this reason, it is often convenient to
use different notations for R as a source and as a target of F. If we let F,(R) denote R when
viewed as a module over itself via Frobenius, and for r € R we denote by F,(r) its elements
(just to distinguish them from the scalars), then for r, s € R we have

F.r)+ F.(s)=F.(r+s) and r-F.s)=F.rPs).

Observe that the natural map ¢ : R — F,(R) which sends r — F,(r?) is now R-linear. In
fact, for r,s € R we have

o(r+5) = Fu((r + 5)P) = (7 + ) = F.(r7) + F.(s") = o(r) + ols),

and
ro(s) = rF.(sP) = F.(rPs?) = F.((rs)?) = ¢(rs).

Remark 1.8. The same considerations can be carried out for the e-th iteration of Frobenius.
In this case, we will denote the restriction of scalars by F¢(R), and the map R — F¢(R)
sending r — F¢(r?") is now R-linear.

Now let M be any R-module. We let F,(M) be the F,(R)-module, with operations defined
as follows. For my,my € M and r € R:

F.(mq) + Fu(mgy) = Fu(my +mso) and  F.(r) - Fi(my) = Fi(rmy).

This action is not very interesting: in fact, if we recall that R and F.(R) are actually the
same ring, and we identify them, then M and F,(M) become the same module.

However, every F,(R)-module is also an R-module. In this case, the action is much more
interesting: r - F.(m) = F.(r’m) for all r € R and m € M. We will use this action over and
over again.

Given an R-linear map f : M — N, there is an induced F,(R)-linear map Fi(f) : F.(M) —
F.(N), defined as F.(f)(F.(m)) = F.(f(m)) for all m € M. In particular, this is also an
R-linear map.
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Remark 1.9. An alternative point of view, which is only fully justified when R is reduced, is
that of viewing F,(R) as the ring of p-th roots of elements in R. More generally, given an
R-module M, we let M'/? be the set of elements m'/?, for m € M. Under this point of view
we have that the map R — R'Y? sending r ~ r = (r?)"/? is R-linear, and every M'/? is an
RYP_module, as well as an R-module.

Proposition 1.10. Let R be a ring of characteristic p > 0, and e be a positive integer.

(1) The functor F¢(—) from the category of R-modules to the category of F(R)-modules
18 exact.

(2) If W C R is a multiplicatively closed system, then the Ry -linear map ¢ : (FE(R))w —
F¢(Rw) defined as FT(T) — F¢ (-5=) is an isomorphism.

wP®

Proof. Part (1) is clear, since if 0 - A — B — C' — 0 is any exact sequence of R-modules,
then both the modules and the maps in the sequence 0 — Ff(A) — FS(B) — Ff(C) — 0
are unchanged (what changes is the R-module structure). In particular, kernels and images
are unchanged, and the sequence is still exact.

For (2): the map v is clearly additive. Given s/u € Ry, letting ¢ = p® we have

o3 B o (B () - 2 () - 20 (B,

Now consider the map ¢ : FE(Ry) — (F£(R))w defined as F¢ (£) — %q*l) It is clearly
additive, and for s/u € Ry we have

o2 F (L)) =¢ (Ff (_) _ Fe(strut )
U w ulw udw

qlee q—1 Fe q—1
_ su Fo(rw >:§.M:£.¢<F5(L)>,
udw U w U w

Thus both 1 and ¢ are Ry -linear. It is easy to check that they are each other’s inverse, and

therefore ¢ is an isomorphism.
OJ

Remark 1.11. From the point of view of p°-th roots, the previous proposition simply states
the more intuitive fact that the functor (—)/? is exact, and that taking p°-th roots commutes
with localization.

1.3. A quick reminder of integral closure.

Definition 1.12. Let I C R be an ideal. An element x € R is said to be integral over I if
there exists NV > 0 and elements ¢; € I such that

2N+ N +iy =0,
We denote by I the set of all elements that are integral over I.

The following are some properties that are almost immediate to check. We refer to [HS06]
if the reader is interested in seeing a proof.

Proposition 1.13. Let I C R be an ideal, and x € R be an element.
(1) T is an ideal, and I C T C V.



(2) = € I if and only if the image of x in R/P belongs to IR/ P for every minimal prime
P of R.

(3) [f Rred = R/\/ﬁ, then TRred = m.

(4) = € I if and only if there exists N > 0 such that ™+ € I" for all r > 1.

(5) If W is a multiplicatively closed system, then IRy, = IRy, .

For our purposes, it will be helpful to give a different characterization of integral elements.
The full proof of the characterization can be found in [HS06], and relies on the concept of
valuation. Here, we will only prove one implication.

Notation 1.14. For a ring R, let us denote by R° the set of elements in R that do not
belong to any minimal prime. For example, if R is a domain, then R° = R ~ {0}.

Proposition 1.15. Let I C R be an ideal, and x € R be an element. Then x € I if and
only if there exists ¢ € R° such that cx™ € I™ for infinitely many n > 0.

Proof. Let Min(R) = {Py,...,P,}. First assume that + € I. By Proposition 1.13 (4) we
have that 2V € I"(I+(z))N C I" for all > 1. Assume that I is contained in P,N...N By,
and [ is not contained in P; for j = k + 1,...,s. By prime avoidance we can choose
d € INN(Ppy1U. . .UP,). Moreover, let t > 0 be such that (v0)! = (P.N...NP,)" = (0), and
let € € (Ppy1N...NP)' N (P U...UP;). Observe that, by our choices, e(PiN...NE,)" = (0).
Let ¢ = d + e, and note that ¢ € R°; in fact, if for instance ¢ € P;, then e = c—d € Py,
because d € IV C Py, and this contradicts our choice of e. On the other hand, if ¢ € P,, then
d = c—e € P, contradicting our choice of d. Finally, by what we have shown above, we have
that ca¥*" € cI™ = (d+e)I” C IN*7+el". Forr > t we have that el” C e(PiN...NP)t = (0),
and this shows that cz™ € I" for all n > 0.

The converse relies on valuations. Assume that cz” € I" for all n > 0, and let P = P,
be any minimal prime of R. Let V' be a discrete valuation domain sitting between R/P and
Frac(R/P), with associated value function v : V' — Z. Note that cx™ € I"V still holds for
infinitely many n > 0, and therefore v(c) + nv(z) > nv(I). Since this holds for all n > 0,
one must have v(z) > v(I), that is, z € IV. Since I = (), IV N R, the claim follows. O

1.4. Tight closure. Tight closure was introduced by Hochster and Huneke around 1990 as
a systematic tool to attack problems for rings of characteristic p > 0. Its definition can seem
quite technical and obscure at the beginning, but it is very natural, especially if compared
with the characterization of integral closure given in Proposition 1.15. We will make this
connection later in this subsection.

Definition 1.16. Let R be a ring of prime characteristic p > 0, I C R be an ideal, and
x € R be an element. We say that x belong to the tight closure of I if there exists ¢ € R°
such that cz? € I9 for all ¢ = p° > 0. We denote by I* the set of elements in R that belong
to the tight closure of I. We say that [ is tightly closed if I = I*.

Example 1.17. Let R = F3[z,y]/(z* — 4*). Then z € (y)*. In fact, choose ¢ = x € R°; for
all e € N* we have

341 341 3 3°+3

vt =) =) ="y e ) =P
Some basic properties of tight closure:

Proposition 1.18. Let I C R be an ideal. Then:
7



(1) I* is an ideal.

(2) I C I

(3) If I C J, then I* C J*.
(4) () =1

Proof. (1) If x,y € I*, then there exist ¢,d € R° such that cx? € I'9 and dy? € 19 for
q = p° > 0. Observe that cd(z + y)? € I9 for ¢ > 0, proving that = +y € I*. Similarly,
if z € I* and r € R, then cz? € 119 for ¢ > 0, and it follows that c(rz)? = criz? € 14 for
g > 0, so that rz € I*. (2) and (3) are equally straightforward.

(4) By (2), it suffices to show one containment. Let z € (I*)*. Then cx? € (I*)4 for
q> 0. Let I* = (f1,..., f;). Then, there exist c;,...,¢; € R° such that ¢;f{ € I9 for all
g > 0 (and we choose g > 0 that works for all elements here involved). Let d =c-¢;--- ¢y,
and observe that d € R°. Then for some r; € R and all ¢ > 0 we have

dz? =cy - ¢ <Zrzflq> :Zrécifiq e 19,

7

(2

and it follows that x € I*. O
Some more examples, to show the subtlety of the definition.

Examples 1.19. (1) Let R =TF,[x,y,2]/(2* + y* + 2*), with p > 3. Then 2? € (y,2)*.
(2) Let R = Fylx,y,2]/(z* — y® — 2°). Then (y,2)* = (y,2). This can be tested by
showing that = ¢ (y, z)*, because x generates the socle of R/(y, z).
(3) Let R =T,[z,y,z]/(x? — y° — 27). This time, z € (y, 2)*.

Proposition 1.18 shows that tight closure is indeed a closure operation.

Proposition 1.20. Let I C R be an ideal. Then:
(1) VoCcI-cIcC V1. Moreover, if I is a principal ideal, then I* = 1.
(2) x € I if and only if the image of x in R/ P belongs to the tight closure of (I + P)/P
for every minimal prime P of R.
(3) If R is reduced, or I has positive height, then x € I* if and only if there exists c € R°
such that cx? € 119 for all q.

Proof. The inclusions of (1) are easy from the definitions and the previous discussion about
1. For the second claim, it suffices to observe that I9 = 9 if I is principal.

(2) If z € I*, then the same relation holds true when going modulo any minimal prime
P. Observe that ¢ € R° implies that the class of ¢ in R/P is non-zero, hence ¢ € (R/P)°.
For the converse, let P, ..., P; be the minimal primes of R, and let x be such that x; € I7,
where the subscript ¢ denotes the class of x and I in R/P,. By assumption, there exist
¢; € (R/P;)° = R/P; ~ {0} such that ¢;a! € [i[q] for all ¢ > 0. Lifting back to to R, we
can always assume that the lift ¢, is in R°, by Prime Avoidance. Then cz? € I9 + P; for
all ¢ > 0. For each i, by Prime Avoidance choose t; in all the minimal primes except P,.
Let d = > tic;. Then da? € 19 + dotP C T4 4+ IL P < T4 4+ /0. Choose qo such that
(\/6) ool _ 0. Then c%g9% ¢ I[qq‘)], and thus x € I*.

(3) Let I be an ideal, and x € I*. Fix ¢ € R° and ¢ such that caz? € 119 for all ¢ > qq.
First assume that ht(/) > 0. Then there exists d € I that avoids all minimal primes of

R. In particular, d® € R°, and also d® € Il9 for all ¢ < qo. Setting e = cd®, we have
8



that ex? € Il9 for all . Now assume that R is reduced instead; by what we have already
proved, we may assume that ht(/) = 0. In other words, if (0) = P, N...N P, where
the P,’s are the minimal primes of R, then P, € Ass(R/I) for some i (possibly more than
one). Assume that Py,..., P, € Ass(R/I), while Pyiq,..., P, ¢ Ass(R/I). By (1), we have
that z e I* CVIC P N...N P, and = ¢ U§:s+1 P;. By Prime Avoidance, we can find
d € Py1N...N P, such that d ¢ |J;_, P;. Observe that xd € (,_, P, = (0). Again by Prime
Avoidance, we can find a € I, with o ¢ U§=s+1 Pj; observe that % € [1%] U;:sﬂ P;. Let
e = ca® 4 d. Note that e € R° by choice of a and d. Moreover, we have ex? = a%cz? € Jl9
for all ¢, as desired. 0

Remark 1.21. A different way to express the condition that x € I* is using Frobenius push-
forwards. To see this better first assume that R is reduced, so we may use the point of
view of p-th roots. Then cz? € I9 is equivalent, after taking g-th roots, to the condition
that ¢'/92 € (119)1/9 = TRY2, More generally, using Frobenius push-forwards, we have that
x € I* if and only if there exists ¢ € R° such that F¢(c)z € IF¢(R) for all e > 0.

2. KuNz’s THEOREM AND TIGHT CLOSURE IN REGULAR RINGS

Using the last remark of the previous section (or Proposition 1.18 (2)), we can view the
condition of belonging to the tight closure of an ideal as a weakening of the membership
condition. In this sense, if an ideal is tightly closed, it is “easier” to show that an element
belongs to the tight closure, then to the ideal itself. So it makes sense to ask: when are ideals
tightly closed?

We start with an illustrative example.

Example 2.1. Let R = F,[z,y], and I = (22 y*). Observe that (zy)? € I? therefore

(zy)?™ € I?" for all n. This gives zy € I. On the other hand, if zy € I*, we would have

c(ry)? € 14 = (2% %) for all ¢ > 0. Then c € (2%9,929) :x (vy)? = (29,97). This gives

CJE (]Df»()(xq,yq) C Nysom? = (0). A contradiction. So zy ¢ I"* and, in fact, J = J* for all
C R.

Observe that R = F,[z,y] is a regular (local) ring. More generally, we have the following
family of examples.

Example 2.2. Let R be either F,[zy,...,24] or F,[z1,...,24]. Since F¢(R) = R? =
F,[z{,..., 2] in the first case and F,[z], ..., 2] in the second, it can easily be proved by in-
duction on d > 1 that R is a free R%-module, with basis given by {aczll . -mff |0 <iy,... 00 <
q—1}. In particular, the rank of R as an R%module is ¢?. This is equivalent to claiming that
RY4is a free R-module of rank ¢ with basis { (2" - - 2%)Y¢ | 0 < iy, ...,iq < ¢— 1}, or that
F¢(R) is a free R-module of rank ¢?, and with basis { F¢(z} ---2%) | 0 <4y, ...,59 < ¢ — 1}.

In Example 2.2 we have in particular that F¢(R) is flat as an R-module and, since R is
reduced, this is the same as the e-th iteration of the Frobenius map being flat. We now recall
the definition and the basic properties of flatness that we will need.

Definition 2.3. Let R be a ring, and M be an R-module. The module M is flat over R if,
for every exact sequence 0 -+ A — B of R-modules, the sequence 0 -+ A®r M — Bz M
is exact. The module M is faithfully flat over R if, for every sequence £ : A - B — C (not

even necessarily a complex), we have that & is exact if and only if £ ® g M is exact.
9



A ring homomorphism f : R — S is said to be (faithfully) flat if S is a (faithfully) flat
R-module via f.

Clearly faithfully flat modules are flat, but the converse does not hold, in general. The
following is a basic result on flatness (stated in our very specific case). We give a prove for
completeness.

Proposition 2.4. Let f : R — S be a ring homomorphism. Then

(1) f 1s flat if and only if, for all M € Spec(S) mazimal ideal, andm = MNR(= f~1(M))
mazimal ideal in R, the induced map f : Ry — Sy s flat.

(2) f is faithfully flat if and only if it is flat and, for all R-modules A # 0, we have that
A®r S #N0.

(3) [ is faithfully flat if and only if it is flat and f(m)S # S for every mazimal ideal m
of R.

(4) If f is faithfully flat, then it is injective.

Proof. (1) First, assume that f is flat, and let M be a maximal ideal in S. Let 0 - A — B
be an exact sequence of Ry,-modules, with m = M NR. We have that A®Qg Sy = AQrSy =
(A®pg S) ®s Sur, and similarly for B. Since f is flat, the sequence 0 - A ®r S — B®r S
is exact. Finally, localization is flat, therefore 0 — (A ®g S) ®s Sy — (B ®g S) ®g Sy is
exact.

Conversely, assume that Sy, is a flat R,-module for all maximal ideals M of S, with
m=MNR. Let 0 > A — B be an exact sequence of R-modules, and let K be the kernel of
A®r S — B®prS, which is an S-module. Let M be a maximal ideal of S. Then localizing
gives an exact sequence 0 — Ky — (A®g S) ®s Sy — (B ®g S) ®g Sy Using the same
isomorphisms as above, this is 0 = Ky — Ay ®g,, Sv — Bn ®r, Su. As Sy is flat over
R, by assumption, we must have K); = 0. As this holds for all maximal ideals M in S, this
implies K = 0.

(2) First, assume that f is faithfully flat. Then f is flat. Moreover, if A is an R-module
such that A ®g S = 0, then the exactness of the sequence (0 - A — 0) ®g S implies that
0 — A — 0 is exact, that is, A = 0.

Conversely, let £ : A L B4 Chea sequence; if £ is exact then £ ®g S is exact, since f

is flat by assumption. On the other hand, assume that £ @z S : A IS B9 (0 is exact. By
right-exactness of tensor products we have that Im(go f)®zS = Im(gso fs), and the latter is
zero by assumption. It follows from our hypotheses that Im(go f) = 0, that is £ is a complex.
let H(E) denote its homology. Since f is flat, we have that H(E) ®x S =2 H(E ®r S), and
the latter is zero by assumption. Again, it follows from our hypotheses that H(E) = 0.

(3) If f is faithfully flat, we only have to show that f(m)S # S for all maximal ideals m of
R. But this is immediate from (2), since R/m # 0 implies that R/m ®g S = S/ f(m)S # 0.

Conversely, thanks to (2) we just need to show that if A is an R-module such that A®gS =
0 implies that A = 0. By way of contradiction, assume that A # 0, and let a € A be a
non-zero element. Then [ = anng(a) is a proper ideal of R, and thus it is contained in
some maximal ideal m. Note that aR = R/anng(a) = R/I Since f is flat, the inclusion
0 — aR — A gives an inclusion 0 - aR®r S — A®pr S, and since the latter is zero we have
that 0 = aR®rS = R/I®rS = S/f(I)S, that is f(I)S = S. But then S = f(I)S C f(m)S
implies that f(m)S = S, a contradiction. Therefore A = 0.
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(4) Let € R be such that f(z) = 0. By flatness we have that tR®r S = f(z)S = 0. By
(2) we have that xR = 0, that is, z = 0. O

Observe that, when f is the Frobenius map, Proposition 2.4 shows that F': R — R is flat
if and only if F': Ry — Ry, is flat for all maximal ideals m of R. Moreover, when (R, m) is
local, the condition that F'(m)R # R is trivially satisfied. Therefore F': R — R is flat if and
only if F': Ry — Ry, is faithfully flat for all maximal ideals m of R.

Before diving into the proof of Kunz’s Theorem, we need some results due to Lech, which
can be found in [Lec64].

Definition 2.5. Let (R, m) be a local ring. A collection of elements x4, ..., x, is said to be
Lech-independent if any combination a;x1 + ...+ a,x, = 0 implies that a; € (x1,...,z,) for
every 1 =1,...,n.

Equivalently, if we set ¢ = (x1,...,x,), then z1, ..., z, are Lech-independent if and only
they minimally generate q, and q/q* is a free R/g-module.

Lemma 2.6 (Lech’s Lemma). Let (R, m) be a local ring, and x4, ..., x, be Lech-independent
elements which generate an m-primary ideal. If x1 = y121, then

Cr(R/(z1,x9, ... xn)) = Lr(R/(y1, T2, ..., x,)) + Lr(R/(21, 2, ..., Tp)).

Proof. We prove that (z1,...,2,) g y1 = (21,22,...,2,). The containment D is clear.
Conversely, if ay; + a1z + asws + . . . + a,x, = 0, then multiplying by z; and rearranging we
get that (a + ajz1)xy + by + ... + byx, = 0, where b; = z1a;. Our assumption yields that
a+ a1z € (x1,...,2,) C (21,22,...,2,), and therefore a € (21, 2s,...,z,), as desired.

To conclude the proof it suffices to consider the short exact sequence

0—— R/(x1,...,20) i Y1 —— R/(x1, ..., x0) — R/(y1, 9, ..., 23) — 0
and to count lengths. 0
We are now ready to prove Kunz’s Theorem [Kun69].
Theorem 2.7 (Kunz). A ring R is regular if and only if the Frobenius map is flat.

Proof. Since both issues are local, we may assume that (R, m) is local. Observe that If R is
regular, so is its completion R; in fact, by Cohen’s structure Theorem, if £ = R/m then R

is isomorphic to a power series ring kfx1,...,z4]. Observe that RP = kelaf, ... 5], Tt is
easy to see that kP[xy, ..., x4] is a free k[, . . ., 28]-module; in particular, kP[z7, ... 5] —
kP[zy, ..., xq4] is flat. Since kP[zq, ..., x4] — k[x1,...,24] is also flat, it follows that R is a

flat RP-module. Since R is faithfully flat over R, it follows that R is flat over RP, and since R
is reduced this is equivalent to F' : R — R being flat, because the Frobenius map is injective.

For the converse, if the Frobenius map F' is flat, then it is in fact faithfully flat, because
it is a flat local morphism. Also, the same is true for any iteration of F. Then Frobenius is
injective, R is reduced, and R is flat over R? for any ¢ = p°®. Let n, = m N RY, and observe
that it is the maximal ideal of RY. Moreover, observe that ml4 = ngR. Since R is flat over
R?, we have that mld = n, ®pe IR, and therefore, again by flatness

m[q]/(m[q])2 o nq/ﬂg ®ps R = (ﬂq/ﬂg ®Ra/n, Rq/nq) @pt R

= nq/nz ®pam, (R /ng ®pa R) = “q/ﬂfl ®pam, B/ngR = “q/ﬂ?] ®Ra/n, R/ml
11



is a free R/ml4-module, since ng/n? is a free R?/n,-module, given that R/n, is a field.
Thus, if x1,...,z, are a minimal generating set of m, then z{,..., z¥ are Lech-independent.
Passing to the completion does not affect lengths, therefore a repeated application of Lemma
2.6 gives that

(g (R/ml) = 05 (ﬁ/(mf{, . ,xg)zfz) e
for all ¢ = p°. By Cohen’s Structure Theorem we have that R = k[ X1, ..., X4]/I for some
ideal 1. If I # (0), we can pick ¢ = ¢° > 0 such that I ¢ (X¥,...,X7). Then
()= U(R)(27,...,29)R)
— (k[[Xl, LX) XE ,Xg’))
< 0 (KIXp - X/(XE S X)) = (@)

which contradicts our previous claim. Therefore I = (0), and R is regular. It follows that R
is regular as well. 0

We end this section relating regular rings and tight closure. We first need to recall some
very-well known properties of flat maps.

Proposition 2.8. Let f : R — S be a flat ring homomorphism. Let I, J be ideals of R, and
x € R be an element. The following hold:

(1) f(I:r2)S = [f(I)S s [(x).

(2) fUNJ)S = f(I)Sn f(J)S.

(3) If f is faithfully flat, then f(I)SNR =1
Proof. (1) We have a short exact sequence of R-modules:

R o, R R R

I:pz I (I,x)

where the map a sends the class of an element r € R to the class of ro € R/I. Observe that
it is well defined, since z([ :g ) C I. Since S is flat over R, this induces an exact sequence

0— — 0

a®gids R R
0— ]:Rx®RS 7 ®RrS — 7.2) ®rS — 0
Using the isomorphism R/J ®p S = S/ f(J)S, this becomes
0— S N 5 — S — 0

f( g x)S fas  fl,x)s
where [ sends the class of an element s € S to the class of sf(z) in S/IS. This sequence
shows that f(I :gx)S={se€ S|sf(x) e f(I)S} = f(I)S :s f(x).
(2) The proof is similar to that of (2), and it is left as an exercise.
(3) Tt follows from the fact that the map R/I — R/I ®g S = S/IS is injective. O

Remark 2.9. In the case of the Frobenius map in a regular ring R, then (1) says that for all
I CR, z€ Rand q=p° we have [l : 29 = (I :p z)9. Similarly, (2) states that for all
I,J C R, and q = p°, we have (I Nn.J)ld = [ld n jld,

12



We can finally state and prove Hochster and Huneke’s Theorem on tight closure in regular
rings.

Theorem 2.10 (Hochster—Huneke). Let R be a regular ring. Then every ideal of R is tightly
closed.

Proof. Let I C R be an ideal. Let x € R be such that ca?” € IP for all e > e, for some
eo € N* and ¢ € R°. By Proposition 2.8, we then have

ce ﬂ 1P 2Pt = m(] q x)P C ﬂ(] ‘g T)P.
e=eq e=eq e=eq
Assume, by way of contradiction, that x ¢ I. Then (I :g z) is a proper ideal, hence
contained in some maximal ideal m. Thus we have (I :z z)?" C m*" for all e. It follows that
cE ﬂe%o m?", and therefore ¢ = 0 in R, by Krull’s Intersection Theorem. In particular, c
is a zero-divisor, and therefore ¢ belongs to some associated prime of R. Since R is regular,
it has no embedded primes, and therefore ¢ belongs to some minimal prime of R. This
contradicts our choice of ¢ € R°, and it then follows that x € I. 0

3. WEAKLY F-REGULAR RINGS

Definition 3.1. A ring R is said to be weakly F-reqular if every ideal I C R is tightly
closed. R is said to be F-regular if, for every multiplicatively closed set W C R, the ring Ry,
is weakly F-regular.

By Theorem 2.10 we have that regular rings are F-regular. Moreover, F-regular rings are
clearly weakly F-regular. Some cases in which the converse to the latter holds have been
proved but, in general, it is unknown whether the two notions coincide. The difficulty is of
course related to the problem of whether tight closure localizes, that is, whether I* Ry =
(IRw)* for every multiplicatively closed set W and every ideal I C R. This is known to be
false thanks to the following example provided by Brenner and Monsky in [BM10]. However,
we point out that this example does not give any information on the relation between weakly
F-regular and F-regular rings.

Example 3.2 (Brenner-Monsky). Let R = Fofx,y, 2,1]/(z* + ayz® + 2%z + 32 + ta?y?),
I= (2% y' 2%, W =F,[t]\{0} and f = 323, then f € (IRw)*, but f & I* Ry In particular,
we have I* Ry # (I Rw)*. Hence, tight closure does not commute with localization.

Tight closure is known to behave well with respect to localization in certain cases. This
allows us to reduce any weakly F-regularity issue to the local case.

Lemma 3.3. Let I C R be an ideal.
(1) If I is an ideal of R that is primary to a mazimal ideal m, then (IRy)* = I*Ry,.
(2) If every ideal primary to a mazimal ideal is tightly closed, then every ideal of R is
tightly closed.

Proof. (1) First the easy containment: let z € I*; we want to show that its image in Ry,
belongs to (I Ry)* (this is true for any ideal, not necessarily m-primary). By assumption,
there is ¢ € R° such that cz? € 19 for all ¢ > 0. It follows that the image of cx? in Ry
belongs to IR, = (IR,)!9 for all ¢ > 0. As ¢ € R°, we also have that ¢ € (Ry,)°, and this

proves the containment.
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For the other containment, let o = z/y € Ry (with € R and y ¢ m) be such that
da? € (IR,) for some ¢ = ¢/cy € (Ry)°. Multiplying by cpy? we get that < € (IR,,)4
for all ¢ > 0. Let P,..., P, be the minimal primes of R, and assume that c€ P, N...N P,
but ¢ ¢ P for all j =s+1,...,t. Since ¢ € (Ry)°, we must necessarily have P, Z m for all
i=1,...,s. Letde€ P;y1N...N B~ Uj:l P;. Then d is nilpotent in Ry, that is d¥ =0 in
Ry, for some (fixed) N. Let I = (fi,..., f,). Then we have a relation

(c+dN)at _ et :Z%f'q

1 1 - big "

for some b;, ¢ m (depending on ¢!!). Let e = ¢+ d" € R°, and b, = [], bi,. This gives

byex? € I inside R. Since I is m-primary, so is I1? for all ¢. In particular, since by, ¢ m, we
have ex? € 19 for all ¢ > 0. This gives x € I*, and thus a = z/y € I* Ry,

(2) Observe that, given any ideal I C R, we have I = () c\pax(ry [nen( + m™). Since

every ideal I + m”" is either R or m-primary, and is therefore assumed to be tightly closed,

we have
I* = (ﬂ([ —i—m”)) CAUI+m") = I+m") =1 O

m,n m,n m,n

Lemma 3.4. A ring R is weakly F-reqular if and only if Ry is weakly F-regular for all
mazimal ideal m of R.

Proof. Assume that R is weakly F-regular, and let m be a maximal ideal. By Lemma 3.3, to
check that ideals in Ry, are tightly closed, it suffices to show mR,,-primary ideals. So let I Ry,
be one such ideal, for some ideal I C R. Again by Lemma 3.3 we have (IRy)* = I*"Ry = I Ry,
as desired.

Conversely, assume that R, is weakly F-regular for all maximal ideals m in R. Again
by Lemma 3.3, to show that R is weakly F-regular it is sufficient to show that [ = [* for
all ideals primary to a maximal ideal. So let I be an m-primary ideal, and x € [*. Then
T € I'Ry = (IRn)* = IRy. It follows that yx € I for some y ¢ m; since I is m-primary, it
follows that x € I, as desired. O

As motivation for introducing weakly F-regular rings, we will end this section by proving
that weakly F-regular rings are Cohen-Macaulay and normal (i.e., a ring that locally at every
maximal ideal is a domain which is integrally closed in its field of fractions). Since all these
issues are local, we will assume for the rest of the section that (R, m) is local.

Proposition 3.5. Let (R, m) be a weakly F-regular local ring. Then R is a normal domain.

Proof. First of all, R is reduced. In fact, by Proposition 1.20 we have that v/0 C (0)* = (0).
Now we prove that R is a domain. Let (0) = P, N P, N...N P be the minimal primes of R,
and assume that ¢ > 2. We want to reach a contradiction, which will end the proof. If ¢t > 2,
we can pick x € P \ UZZQ P, and y € P,N...N P, ~ P, by Prime Avoidance. Observe that
xy = 0. For this reason, for all ¢ = p® we have (z + y)z? = x(x + )7 € (x + y)l4. Observe
that x+y € R°, by choice of x and y. Therefore x € (x+1y)* = (x+vy). This says that there
exists r € R such that © = r(x +y), that is, (1 —r)x =ry. If r ¢ m, then y € (x) € Py, a
contradiction. If r € m, then 1 —r ¢ m, so that x € (y) € P,, a contradiction again.
14



Finally, let o = £ € Frac(R) be an element which is integral over R. Then, there exist
elements t1,...,ty € R such that oV + ¢,V + ... +ty = 0. Multiplying the equation by
sV gives an equation 'V 4 t;srN"' 4+ . 4 tysY = 01in R. Note that this gives r € (s). By
Proposition 1.15, we can find ¢ € R° such that cr™ € (s)" = (s") for all n > 0. In particular,
crd € (s7) = (s)l for all ¢ = p° > 0, and thus r € (s)*. Since R is weakly F-regular, r € (s),
and therefore there is ¢ € R such that r = ts. It follows that « = - =1 € R, and R is
normal. U

We recall that a parameter for a ring (R, m) of positive dimension is an element x € m such

that dim(R/(x)) = dim(R) — 1. A system of parameters is a sequence of elements xq, ..., x4
such that z,,; is a parameter for R/(z1,...,x;). We recall that R is said to be Cohen-
Macaulay if every system of parameters xy, ..., x4 satisfies (z1,...,2¢) :gr Tpp1 = (21, .., 2¢)
for every t.

Theorem 3.6 (Colon capturing). Let (R, m) be a local ring that is the homomorphic image
of a Cohen-Macaulay local ring. Let xq,...,xq be system of parameters. Then

(X1, ..y 2) ig i1 C (21,00, @),

Proof. Let P € Min(R). By Proposition 1.20 (2) it suffices to show the containment in R/ P;
therefore we may assume without loss of generality that R is a domain. By assumption
R = S/Q, where @ is a prime of S, say of height h. TLet yi,...,y, € @Q be a regular
sequence and choose z; € S be any lift of z;. By assumption, 2| does not belong to Q.
Since @ is a minimal prime over J = (yi,...,yn) and S is Cohen-Macaulay, we have that
Ass(S/J) = Min(J) = {Q, @1, ..,Qs}, where Q1,...,Qs are primes of the same height h.
Assume that 2] € Q1N...NQy, and 2] ¢ Q11 U...UQs. By Prime Avoidance, we can choose
2 €QNQ1N...NQs \ (Q1U...UQ:). Observe that z; = 2] + 27 avoids all associated
primes of (yi,...,ys), and it is still a lift of xy, since 2] € Q. Therefore yi, ..., ys, 21 forms a
regular sequence. Repeating this argument with a lift z; of z; and the ideal Q + (21, ..., 2-1)
we obtain elements zq,...,24 of S such that (zq1,...,2)5/Q = (z1,...,2:)5/Q for all t =
1,....d,and yq, ..., ypn, 21, - - - , 2q forms a regular sequence in S. We may replace x4, ..., xq by
the images of z1, ..., 24 in S/Q. Since @ is a minimal prime of J = (y1,...,yn), we have that
Q is nilpotent in (S/J)qg. Thus, there exists ¢ ¢ Q and gy = p® such that cQ! C J. Now,
let 7 € (z1,...,2%) iR Tys1, SO that xy 7 = 25:1 r;x;. Lift the relation to .S, so that there are
lifts s, s1,...,8, € Sofr,ry,...,r;such that Zt+13_21;:1 s;z; € Q. For ¢ > qo, multiplying by
c and taking g-th powers we get c(sz;11)? — > i, c(s:2:)? € Q@ C J. Rewriting the relation

we get csiz! ;€ (2{,...,20,y1,...,yn)S. Since 2{,..., 2/, 2.1, y1,...,y, form a regular
sequence in S, we have that cs? € (2f,..., 20, v1,...,yn)S s 2f1 = (2, -, 28 v, yn) S
for all ¢ > qo. Mapping to S/Q = R this gives that cr? € (zy,...,2,)l¥ for all ¢ > qo, that
is, 7 € (x1,...,2¢)" O

Theorem 3.7. Let R be a weakly F-regqular ring which is the homomorphic image of a
Cohen-Macaulay ring. Then R is Cohen-Macaulay.

Proof. Both issues are local (at maximal ideals), so we may assume that (R, m) is local.

Let xy1,...,z,4 be any system of parameters for R. By Theorem 3.6, and since R is weakly
F-regular, we have that (zq,...,7) g 401 C (21,...,24)" = (z1,...,2;). Therefore R is
Cohen-Macaulay. O
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Remark 3.8. One may wonder whether the condition of being homomorphic image of a
Cohen-Macaulay local ring is very restrictive or not. In fact, it turns out that a large class
of rings satisfies this assumption. First of all, observe that if (R, m, k) is local and complete,
then even more is true, namely by Cohen’s Structure Theorem R is a quotient of a power
series ring S = k[xy,...,x,]. By a result of Gabber (Theorem 4.8), in positive characteristic
the same is true for a larger class of rings, called F-finite rings, that we are going to introduce
in Section 4.

Recall that, if S is a ring and R is a subring of S, then R is said to be a direct summand
of S if the inclusion R C S splits as a map of R-modules. This means, that there exists an
R-linear map p : S — R such that, if i : R < S denotes the inclusion, then p o i = idpg.
Equivalently, there exists an R-module M such that S = R ® M.

We now prove that direct summands of (weakly) F-regular rings are (weakly) F-regular.
As a consequence of this fact and of Theorem 2.10, we have that direct summands of regular
rings are F-regular.

Proposition 3.9. Let R C S be an inclusion of integral domains such that R is a direct
summand of S. If S is (weakly) F-reqular, then R is (weakly) F-regular.

Proof. After possibly localizing R and S at a multiplicatively closed system W C R, we
may only prove that R is weakly F-regular if S is. First, we recall that since R is a direct
summand of S every ideal I of R is contracted from S, that is ISNR = I. In fact, I C ISNR

always holds. Conversely, if » € R is such that r = 22:1 i;8; for some ¢; € I and s; € S,

then applying the splitting p: S — R we get r = p(r) = p <Z§.:1 z’jsj) = E;Zl i;p(s;) € 1.

Now, let I C R be an ideal. We prove that I is tightly closed. Take x € [I*, this
implies that there exists ¢ € R° such that caz? € I9 for all ¢ = p¢ > 0. Tt follows that
cxd € 148 = (18l for all ¢ > 0. Note that R° = R~ {0} C S° = S~ {0}. It follows that
x € (IS)* = IS since S is weakly F-regular by assumption. Therefore z € ISN R = I which
shows that I is tightly closed. 0

Thanks to the previous result we can produce many examples of weakly F-regular rings
that are not regular.

Example 3.10 (Invariant rings of finite groups are weakly F-regular). Let k be an alge-
braically closed field of characteristic p > 0. We consider a power series ring S = k[z1, ..., x4]
and a finite group G acting linearly on S such that p {|G|. We denote by R = S¢ the cor-
responding invariant ring. In this case, the Reynolds operator

p:S— R, p(x):iz:a(x)

gives a splitting for the inclusion R C S. So R is a direct summand of S, which is regular.
Therefore, R is weakly F-regular by Proposition 3.9 and Theorem 2.10. We exhibit two
explicit examples in dimension 2. Let S = kfu, v].

(1) We consider a cyclic group G of order n, generated by a matrix diag(¢,&), where
¢ € k is a primitive n-th root of unity. The group G acts linearly on each variable as
u+— &u and v — &v. Then, the corresponding invariant ring R is the n-th Veronese
subring

R=k[u" v v,...,u" " o"] =k [uv’ | i+j=n].
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More generally, Veronese subrings of power series rings over an algebraically closed
field are weakly F-regular. In particular, they are Cohen-Macaulay and normal.

(2) We consider again a cyclic group G of order n, but this time generated by a matrix
diag(&,€71), where € € k is a primitive n-th root of unity. The action of G on S is
given by u — £u and v — £ 1v. So, the invariant ring R is

R =k [u", uv,v"] = k[z,y, 2]/ (y" — xz)

which is called A,,_;-singularity. Note that this ring is clearly Cohen-Macaulay, since
it is a hypersurface, and it is also normal by Proposition 3.5.

Remark 3.11. Every diagonal action of a group G generated by a matrix diag(¢?, £7) acting
linearly on S = k[u,v] produces a ring of invariants R = S¢ which is a direct summand
of S, regardless of the characteristic of k£ and the order of G. In fact, consider the map of
monoids N? — Z/(n) sending (a,b) + ai + bj, and let H be its kernel. Then R = k[H],
and its complement M = k[N? \ H] is a module over R, giving a direct sum decomposition
S = R@& M as R-modules. This fact can, of course, be generalized in several ways; e.g., for
higher number of variables, and more general group actions which can be related to maps
between monoids.

4. A BRIEF DISCUSSION ON F-FINITENESS

Definition 4.1. We say that a ring R of characteristic p > 0 is F-finite if the Frobenius
map F': R — R is a finite morphism.

Note that F' is finite if and only if F° is finite for some (equivalently, all) integers e > 0.
In the notation introduced in Section 1, we have that R is F-finite if and only if Ff(R) is a
finitely generated R-module for some (equivalently, all) e > 0.

Remark 4.2. When R is reduced, R is F-finite if and only if R is a finitely generated R?-
module for some (equivalently, all) ¢ = p°, if and only if or R'Y? is a finitely generated
R-module for some (equivalently, all) ¢ = p°.

Example 4.3. A field k is F-finite if and only if [k : k?] < oco. For instance, any finitely
generated field extension of a perfect field is F-finite (e.g., k = F,(¢1, ..., t,) is F-finite, since
[k : k] = p™). An example of a field which is not F-finite is F,(¢y,...).

Proposition 4.4. The following classes of rings are F-finite:

(1) Polynomial rings in finitely many variables over F-finite rings.
(2) Power series rings in finitely many variables over F-finite rings.
(3) Quotients of F-finite rings.
(4) Localizations of F-finite rings.

Proof. For (1): if R is F-finite and z is a variable, then {z' | 0 < i < p} is a basis of R|x]
as an R[zP]-module. If {F.(r;) : j = 1,...,n} is a finite generating set of F,(R) as an
R-module, then {F,(r;z") | j=1,...,n,i=0,...,p— 1} is then a generating of F.(R[z]) as
an R[z]-module. The proof of (2) is completely analogous, and we omit it.

For (3): assume that R is F-finite, and let / C R be an ideal. By assumption we have
a surjection R®" — F,(R) — 0 for some n > 0, which induces a surjection (R/I)®" —
F.(R)/IF.(R) — 0. We claim that [F.(R) is a submodule of F,([). In fact, an element of
IF,(R) is of the form }.4;F.(r;), with i; € I and r; € R. Recall that i;F.(r;) = Fi.(ir;) €
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F.(I). Therefore we have a surjection Fi(R)/IF.(R) — F.(R)/F.(I) — 0. Observing
that F.(R)/F.(I) = F.(R/I), and combining this with the previous considerations, gives a
surjection (R/I)®" — F,(R/I) — 0. Therefore R/I is F-finite.

For (4): using the same argument as in (3), we have a surjection R®" — F,(R) — 0.
If W is a multiplicatively closed system, then localizing we obtain a surjection (Ry )%™ —
(Fy(R))w — 0, and recalling that F.(R)y = F.(Rw) by Proposition 1.10 completes the
proof. O

Remark 4.5. Proposition 4.4 yields that a finitely generated k-algebra is F-finite if and only
if k is F-finite, if and only if [k : kP] < co. The same is true for complete local rings. In fact,
by Cohen’s structure Theorem, if (R, m) is a complete local ring with residue field k = R/m,
then R is a quotient of a power series ring S = k[x1,...,z,]. By Proposition 4.4 we have
that R is F-finite if and only if S is F-finite, if and only if [k : k7] < oco.

One may wonder whether, as for weakly F-regular, being F-finite is a local property,
that is whether it is true that a ring R is F-finite if and only every localization R, at a
maximal ideal m C R is F-finite. While R F-finite implies R, F-finite by Proposition 4.4,
the other direction does not always hold. An example was provided recently by Dumitrescu
and Ionescu [DI20].

Example 4.6 (Dumitrescu—Tonescu). Let p > 2 be a prime and let k£ be an algebraically
closed field of characteristic p. Consider the ring

1
(X—l—a)3—}—\/ﬁ| a,bek, b#£0]|,

where X is an indeterminate, and for each square root in the denominator one chooses one
of its values. Then R,, is F-finite for any maximal ideal m of R, but R is not F-finite.

R=Fk|X,

Lemma 4.7. Let (R, m) be an F-finite local ring. If R is reduced then R is reduced.

Proof. Since F°(R) is finitely gencrated, we have F°(R) ®p R = FeR. Now, if we identify
F¢(R) with R, then FeR is the completion of R with respect to the ideal Fe(m)R = mlP.
Since VmlP?l = m, this is the same as the m-adic completion of R, that is }f:f\R = Ff(ﬁ) If
R is reduced, the map R — F¢(R) is injective, and so R — F¢(R) ® R = F°(R) is injective
as well, since the functor M — M ®pg R is exact. Hence R is reduced. 0

We conclude the section with an important theorem by Gabber that shows that F-finite
rings are homomorphic image of regular rings. We record the result here without proof (see
[MP21, Theorem 12.5| for a proof).

Theorem 4.8. |Gab04| Let R be an F-finite ring. Then there exists an F-finite reqular ring
S such that R = S/1I for some ideal I C S.

5. SPLITTINGS, F'-PURE AND STRONGLY F-REGULAR RINGS

We start by giving another proof that regular rings are F-regular, to give a flavor of what
is coming next. For simplicity, we only show that R = F,[z1,...,z,] is weakly F-regular.
Let I C R be an ideal, and = € R be such that cz? € Il9 for some ¢ # 0 and all ¢ = p°¢ > 0.

Equivalently, we have that F¢(c)z € IFS(R) for all e > 0. Since ¢ # 0, for all e > 0 we
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have that ¢ ¢ mPl or, equivalently, F°(c) ¢ mF¢(R). By Nakayama’s Lemma, this simply
means that F¢(c) can be made part of a minimal generating set of the R-module F¢(R), for
e > 0. However, we have already observed that F¢(R) is a free R-module. Therefore, for e
sufficiently large we can make F¢(c) part of a basis of Ff(R). For a fixed e > 0, define an
R-linear map ¢ : F¢(R) — R by sending F,(c) — 1, and every other element of a basis to

any element of R (e.g., to 0). Then we have that
z = P(F(c))r = Y(Fi(c)r) € p(IFL(R)) = [Y(F(R)) € IR.

It follows that I = I* for every ideal I C R, and thus R is weakly F-regular.

In general, F¢(R) is not a free R-module, therefore we do not have such freedom in choosing
amap ¢ : F¢(R) — R. This is what motivates the study of the R-modules Homg(F¢(R), R),
for e € N.

Elements of Hompg(F¢(R), R) are called Cartier maps, or p—°-linear maps, since an R-linear
map ¢ : F¢(R) — R can also be viewed as an additive map ¢’ : R — R satisfying ¢/(r?"s) =
ry'(s) for all r,s € R. Cartier maps can be put together to form a non-commutative [F,-
algebra C = @, Homg(F;(R), R), called the Cartier algebra of R, whose product we briefly
describe below. We will not explore this direction in these notes.

Given ¢ € Hompg(F¢(R),R) and ¢ € Homg(F®(R), R), we can multiply ¢ and ¢ as
follows: 1 - ¢ = 1) o F¢(¢) € Homg(F¢+¢(R), R). Note that R is not central in C since for
r € R and v € Homg(F¢(R), R) we have [r - ¢](F¢(s)) = (rFe* (s)) = ¢ (F(r*"s)), while
[ r](Fe(s)) = $(FE(r) FE(s)) = $(F(rs)).

Note that Hompg(F¢(R), R) is actually an F¢(R)-module, with module structure given by
pre-multiplication: for ¢ : F¢(R) — R, and F¢(r) € FS(R), then [FE(r) - ¢] = ¢(Fe(r)—) is
the map defined as F£(r) - Y(FE(s)) = Y(FE(r)Fe(s)) = Y(FE(rs)) for all FE(s) € FE(R).

In order to study Cartier maps, we recall the following general notions.

Let f : R — S be ring homomorphism. We say that f splits if there exists g € Homg(S, R)
such that g o f = idg. Note that, in particular, f has to be injective (and g surjective).
On the other hand, f is said to be pure if, for every R-module M, then induced map
fu: ROr M — S ®r M is injective.

Remark 5.1. Tt is immediate to see that if f is split, then it is pure. In fact, if g : S — R is
a splitting, then if M is an R-module the map f), still has a splitting, namely the map gy,
induced by tensoring g with M. Moreover, if f is pure then f = fr must be injective.

We now apply these notions to the Frobenius homomorphism.

Definition 5.2. Let R be a ring of characteristic p > 0. We say that R is F-split if the
Frobenius map splits. We say that R is F-pure if /' : R — R is a pure homomorphism.

Remark 5.3. Using the Frobenius push-forward point of view, we have that R is F-split (resp.
F-pure) if and only if the map R — F,(R) splits (resp. is pure). By what we have observed
above, F-split rings are F-pure. Moreover, F-pure rings are reduced by Proposition 1.5, since
if the Frobenius map is pure it is injective.

Even though F-split and F-pure are different notions (for instance, see [DS16]), they are
actually equivalent notions for large classes of rings; in particular, for complete local rings
and for F-finite rings. The fact that a pure morphism f : R — S is split is true more generally

whenever f is a finite map. The proof is based on the following homological lemma.
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Lemma 5.4. Let R be a ring, and M be a finitely generated R-module, with presentation

G- H—-M—=0 (here, G and H are finite free R-module). Let M’ = coker(©'), where
(=) = Homg(—, R), and ©' : H — G’ is the map dual to ©. Given a short exact sequence
0—A— B— C—0 of R-modules, we have

coker(Hompg(M, B) — Homg(M,C)) = ker(M' ®r A = M' @5 B).
Proof. Since G and H are free, we have an exact diagram

O—>H/®RA—>H/®RB—>H/®RC—>O

| | |

0— G pA——G @rB—— G @rC ——0

Since H' is free, we have an isomorphism H'®g B = Hompg(H, B). Under this isomorphisms,
we have ker(H' ®p B — G’ ®g B) = ker(Homg(H, B) — Homg(G, B)) = Homg(M, B).
Similarly for C. As coker(H' ®p A - G' ®r A) = M' ®p A (and similarly for B), the snake
lemma concludes the proof. 0]

Corollary 5.5. F-finite F-pure rings are F-split.

Proof. 1f R is F-pure, then the map ¢ : R — F.(R) is injective. Let C' be the cokernel, and
consider the short exact sequence £ : 0 — R — F.(R) Lo Apply Lemma 5.4 to

M = C to get that coker(Hompg(C, F.(R)) NN Hompg(C,C)) = ker(C"®r R — C'®@gFi(R)),
where 5, = Homg(C, 8). Note that ker(C' ®g R — C' ®g F.(R)) = 0, since R — F,(R) is

B
pure. It follows that the map Homg(C, F,(R)) Hompg (C, C) is surjective and, in particular,
there exists v : C' — F,(R) such that 5,(7) = fo~y =idc. Then the exact sequence & splits,
and R is therefore F-split. O

Proposition 5.6. If R is a regular ring, then R is F-pure. Moreover, if R is F-finite, then
it 1s I-split.

Proof. The second claim follows immediately from the first and Corollary 5.5. For the first,
thanks to Kunz’s theorem 2.7 it suffices to show that a faithfully flat ring map f : R — S
is pure. Let M be an R-module, and let z € M be such that fy(z) =0in M ®g S. Since
f is flat, the inclusion xR C M induces an inclusion xR ®g S — M ®pg S, under which the
element x ® 1 maps to the element fy(z) = 0. In particular, z ® 1 = 0, which implies that
xR ®g S = 0. By Proposition 2.4 (2) we conclude that xR = 0, that is, z = 0. Thus f); is
injective, and the proof is complete. O

We will see that even weakly F-regular rings are F-pure, but we delay the proof until
Section 7.

We now show that F-purity localizes, and that F-purity can be checked locally. If R is F-
finite, then the same holds for F-splitness, in light of Corollary 5.5; however, in the following
result we do not assume that R is F-finite.

Proposition 5.7. Let R be a ring. The following conditions are equivalent:
(1) R is F-pure.
(2) Rw is F-pure for every multiplicatively closed system W C R.
(3) Rp is F-pure for all prime ideals P € Spec(R).
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(4) Ry, is F-pure for all mazimal ideals m of R.

Proof. Assume (1), and let M be an Ry-module; we want to show that (Ry — Fi.(Rw))®g,,
M is injective. Since Fi(Rw) = (Fi.(R))w, and

(Rw — Fi.(Rw)) ®r,, M = ((R — F.(R)) ®r RBw) ®@py,, M

we conclude by our assumption that R is F-pure. The implications (2) = (3) = (4) are
trivial. Now assume (4). By way of contradiction, assume that there exists an R-module
M such that Fy; : (R — F.(R)) ®g M is not injective. In particular, we can find a non-
zero element © € M such that Fy(z) = 0. By assumption, we have that anng(z) is a
proper ideal, hence contained in some maximal ideal m. In particular, the image of x
inside M, = Ry, ®g, My is still non-zero while the image of Fy(z) is, of course, still
zero in (Fy(R) @p M) = Fu(R) ®g My = Fu(Rn) ®pr, Mn. In other words, the map
(R — Fi(Rn)) ®r,, My is not injective, contradicting the fact that Ry, is F-pure. O

We observe that the implications (1) = (2) = (3) = (4) of Proposition 5.7 hold also for
F-splitness, regardless of the F-finite assumption. If R is F-finite, then an alternative proof
of (4) = (1) is also given by the following observation: R is F-split if and only if the map
Hompg(F.(R), R) — Hompg(R, R) induced by the Frobenius map R — F.(R) is surjective.
The latter happens if and only if such a map is surjective when localized at all maximal ideals
m, and since R is F-finite, this is equivalent to Homg(Fi(R), R)m = Homp, (Fi(Ru), Rn) —
Hompg, (Rn, Ry) being surjective for all maximal ideals of R, i.e., Ry, is F-split for all maximal
ideals m of R. While there are short exact sequences of (necessarily infinitely generated)
modules which are locally split but do not split globally, we do not know whether R, F-split
for all maximal ideals m of R implies that R is F-split in general.

Lemma 5.8. For e > 0 let ¢. : R — F¢(R) be the map sending 1 — F£(1). The following
conditions are equivalent.
(1) R is F-split, i.e., @1 splits.
(2) There exists e > 0 such that @, splits.
(3) e splits for all e > 0.
(4) There exists e > 0 and a surjective R-linear map F¢(R) — R.

Proof. Clearly (1) implies (2) and (3) implies (1). Assume (2), and let e > 0 be such that ¢,
splits, and let v, : F¢(R) — R be a splitting. First, we prove that ¢,. : R — F"(R) splits
for every n > 0. In fact, it is enough to observe that ¢,. = F*(”_l)e(cpe) 0...0Ff(pe) © .
Thus, the composition 1,. = ¢, o F(¢))o...0 an_l)e(we) gives a splitting of ..

Now let €/ > 0 be any integer, and choose n such that ¢/ < ne. The composition

’
Ff (‘pnefe’ wne

(R (R) & FY(R) — " R

R— L FY(R)
is the identity, and therefore 1)y = Ve 0 F (0ne_er) is a splitting of .
Finally, clearly (2) implies (4). Conversely, if ¢ : F¢(R) — R is a surjective map, then let
Fe(r) € Fu(R) be an element that maps to 1. Note that the composition
e Ff r
R— L pe(R)—20 L pe(p)—Y LR,
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where F¢(R) W F¢(R) is the F¢(R)-linear map consisting of multiplication by the element
F¢(r), is the identity. Therefore R is F-split. O

From now on, assume that R is F-finite. By Theorem 4.8, we can write R = S/I for some
F-finite regular ring S. Using this presentation of R, we want to describe more explicitly
elements of Hompg(F¢(R), R). We will focus on the case e = 1, but the theory we develop
and the results we present apply with the obvious modifications to any power of p.

Remark 5.9. If S is a Gorenstein local ring, then clearly wg = S, where wg denotes the
canonical module of S. Since F,(S) is an S-module of the same dimension as S, we have
that wp,(g) = Homg(F.(S5),S); however, as ring F,(S) is isomorphic to S, and hence it is
itself Gorenstein. It follows that Homg(F.(5),S) = F.(S) as a F,.(S)-module.

The next Lemma allows to identify a generator of Homg(F.(S5),S) as a F.(S)-module in
the regular (local and N-graded) case.

Lemma 5.10. Let k be a perfect field, and S be either a power series ring k[x1,...,x,] or a
positively graded polynomial ring k[x1, ..., x,]. Let A = {(i1,...,i,) € N | 0 < i; <p}, and
B={F.(a%-x7)|i=(i1,...,i,) € A} be the standard basis of F,(S) as an S-module.
Forie A let p;: Fi(S) — S be the S-linear map defined on the elements of B as follows:

1 ufyj=1
pi( Fi(xy' - ar)) =
0 otherwise

Let ® = pp_1,. p—1y. Then Homg(F.(5),S) is a principal F.(S)-module, generated by ®.

Proof. Since F,(S) is free with basis B, it is clear that Homg(F,(S5),S) is a free S-module,
with dual basis given by {p; | i € B}. Thus, it suffices to show that ¢; € [F.(S) - P]
for every i € A. Recall that the F,(S)-action is defined as follows: if F.(s) € F.(S) and
¢ € Homg(F,(S),9), then [F.(s)- ] = @p(Fi(s)-—) is the map such that [F.(s)-¢|(F.(s)) =
O(Fi(s)Fi(s') = @(Fi(ss")). Thus, it is sufficient to observe that

pi(=) = O(F(af 7" ah ) o) = [F(af T ab ) @l e Fi(S) 0. O
The map P is called the trace.
Proposition 5.11. Let (S,m) be either an F-finite complete reqular local ring with perfect
residue field k, or an F-finite graded polynomial ring over a perfect field k. Let I C S be
an ideal, homogeneous in the second case, and let R = S/I. There is an isomorphism of
F.(R)-modules:
]F*(S) 3F*(S) F*(I)

: IF.(S)

Hompg(F.(R), R)

Fi(s)1 [Fi(s) - @] = ®(Fi(s)-)

Proof. We only give a proof in the case when (S, m) is complete. The proof in the graded case
is completely analogous. If we let S/m = k, then we may assume that S = k[z1,...,z,].
It is easy to see that © is F,(S)-linear; moreover, since it maps F,(I) to zero, it is also
F.(R) = F.(S)/F.(I)-linear.
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Now observe that if s € ([Fy(S) :p(s) Fi(I)), then the S-linear map [F.(s) - ®] €
Homg(Fi(S),S) induces an R = S/I-linear map F,(R) — R. To see this, it suffices
to verify that [F.(s) - ®] maps F.([) into I. But this comes from our choice of s, since
F.(s)F.(I) C IF.(S), and therefore

[Fi(s) - I(Fi(1)) = ©(Fu(s)Fi(1)) € IFL(5)) = ID(FL(S)) € 1,
where we used that ® is S-linear. On the other hand, if F,(s) € I F,(S), then ®(F,(s)F.(S)) C
I®(F,.(S)) C I, that is, ®(F,(s)—) induces the zero map. This shows that O is well-defined.

We now prove that © is surjective. Let ¢ € Hompg(F,(R), R). Since F.(R) = F.(S)/F.(I),

then 1 can be identified with an S-linear map F.(S) — S/I that maps F.(I) to zero. Con-

sider the short exact sequence 0 — [ — S — S/I — 0. Apply the functor Homg(F,(S), —)
to get an exact sequence

0 —— Homg(F,(S),I) — Homg(F.(S), S) —— Homg(F,(S), S/I) — Exts(F.(S),I).

Since S is regular, F,(S) is a finitely generated flat S-module by Kunz’s Theorem 2.7, and
hence it is free. In particular, Extg(F.(S),I) = 0, and thus we conclude that 1) comes from
an S-linear map ¢ : F.(S) — S which maps F,(I) to I. By Lemma 5.10 we have that
¢ = F.(s) - ® for some s € S. We claim that F.(s)F.(I) C [F.(S). If not, assume that
F.(r) € F.(I) is such that F.(s)F.(r) = Fi(sr) ¢ IF.(S). Using the notation of Lemma 5.10
we have that B = {F, (2! ---2i») | i € A} is an S-basis of F,(S), and therefore we can write
Fu(sr) = Y ,cp siFu(al -+ al) for some s; € S. By hypothesis, there is j € A such that
s; ¢ 1. Now consider 7/ = ra '™/t ...qP=1=In 50 that F,(r') is still an element of F,(I).
Note that ®(F,(sr)) = ®(s;at " ---aP~1) = s; ¢ I. This contradicts the fact that [F.(s) - ®]
maps F,([) to I. - -

Finally, to show that © is injective, assume that ®(F,(s)—) is the zero map, and by way
of contradiction suppose that F,(s) ¢ IF,(S). Repeating the same argument as above with
r =1 we see that Fi(s) = Y, siFi(2f - alr), and there is j € A such that s; ¢ I. If we
let 1/ = b~ gP=1oIn then ®(FL(s17)) = ®(s;ah " - aP~1) = 5; ¢ I, which contradicts
the fact that [F.(s) - @] is the zero map. B B O

Remark 5.12. For practical purposes, it is more convenient to identify [ F,(S) and F, () inside
F,(S) with I and I inside S. In this way, an R-linear map 1 : F,(R) — R corresponds to
a choice of an element s € (IP ;g 1)/, with ¢ = O(F.(s)) = [F.(s) - ®].

Remark 5.13. If k is an F-finite field, S = k[z1,...,z,], and I = (f) Cm = (z4,...,2,),
then (IP! :g I) = (fP~'). Thus, if we let R = S/(f), any R-linear map ¢ : F,(R) — R
corresponds to the choice of an element fP~'g € S: more specifically, 1 = ®(F,(fP"g)—).
Moreover, such a map is zero if and only if g € (f).

Example 5.14. Let S = Fyfz,y,2], f = vz + y* and R = S/(f). Consider the ele-
ment fy, and the corresponding Cartier map ¢» = ®(F.(fy)—). Note that, for instance,
(F(1) = O(Fi(ayz+y?)) = ©(Fu(ryz))+@(yFu(y)) = 1+y®(Fu(y)) = 1, and ¢ (Fi(z2)) =
O(F.(2%y2%)) + ©(Fi(ay’z)) = ©(z2Fi(y)) + P(yFu(zyz)) = 22@(Fi(y)) +y@(Fi(zyz)) = y.

The previous example is F-pure, since the map ®(F.(fy)—) is a splitting of R — F.(R).
Recall that F-pure rings are reduced; however, there are integral domains which are not
F-pure.
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Example 5.15. Let S = Fi[z,y], f = 2 — ¢y and R = S/(f). Then fr~! = f? =
z* 4 2%y% 4+ 8. Note that f2 € mBl = (2%,9°). In particular, for all ¢ € S we have that
O(F(f*g)Fu(S)) € ®(mF,(S)) € mP(F(S)) € m. It follows that there is no surjective
Cartier map F,(R) — R, and therefore R cannot be F-pure, even if it is a domain.

Example 5.16. Let S = F,[z,y, 2], let I = (zy,zz,yz), and R = S/I. Note that (zyz)P~* €
(I® :5 I), and therefore ¢(—) = ®(F,((zyz)?~!)) is a Cartier map on R = S/I. Observe
that ¢(F.(1)) = ®(F.((zyz)?~!)) = 1, and thus R is F-pure.

Theorem 5.17 (Fedder’s criterion). Let (S,m) be either an F-finite complete reqular local
ring with perfect residue field k, or an F-finite graded polynomial ring over a perfect field k.
Let I C S be an ideal, homogeneous in the second case. The ring R = S/I is F-pure if and
only if (IP) :g I) € mlPl,

Proof. We only show the case in which S = k[xz,...,z,], as the proof in the graded case is
analogous. We claim that it suffices to show that, for a given s € S, one has that s ¢ mlP! if
and only if O(F.(s)) = [Fi(s) - ®] is a surjective map. In fact, suppose we have proven this
claim. If R = S/I is F-pure, then there exists a splitting ¢ : F.(R) — R on the Frobenius
map, which is necessarily surjective. By 5.11 and Remark 5.12, we have that ¢» = O(F.(s)) for
some s € (I :g I), and by the claim s ¢ mlPl. Tt follows that (I :g I) € mPPl. Conversely,
if there exists s € (I” ;g I) \ mlPl| then the R-linear map ¢ = O(F.(s)) : F.(R) — R is
surjective by the claim. It follows by Lemma 5.8 that R is F-pure.

We therefore prove the claim. Observe that, since S is local, O(F(s)) is surjective if and
only if its image is not contained in the maximal ideal m. If s € mlPl, then F,(s) € mF,(9),
and therefore ®(F,(s)F.(S)) C ®(mF.(S)) € m®(S) C m. Conversely, if s ¢ mlPl, we can
find an element » € S such that rs = (21---2,)?"! + g, with ¢ € mlPl. It follows that
[Fu(s) - ®)(Fi(r)) = ®(Fu((z1 - 2P 1) + Fiu(g)) = 1+ ®(Fi(g)) € 1 + ®(mF.(5)) C1+m,
as desired. O

Example 5.18. Let R = Fy[zy,...,2,] or R =TF,[xy,...,2,], and I be a monomial ideal.
We show that R/I is F-pure (equivalently, F-split) if and only if I is squarefree. The “only
if” direction is clear, since F-pure rings are reduced, and the quotient by a monomial ideal
is reduced if and only if the ideal is squarefree. Conversely, observe that the monomial
(z1---2,)P~" always belongs to (IP! :g I), because every minimal generator of I divides
Ty, and (21 ---2,)P"" ¢ mlPl. We then conclude by Fedder’s criterion, Theorem 5.17.
Example 5.19. Let S = Fr[z,y,2], let f = 23+ 3>+ 2% and R = S/(f). If p = 7,
then the element fP~! = f% contains the monomial 2°y%2° in its support, with non-zero
coefficient. Thus, we can find A € F,, such that A\f¢ = 26¢y%2° 4 ¢, with g € m[7 = (27, ¢7, 27).
Consider the Cartier map 1 = ®(F,(\f%)—); then ¢ (F, (1)) = ®(F.(2%¢°2%)) + ®(F.(g)) =
14+ ®(Fi(g)) € 1+ P(mF,(S)) C 1+ m. It follows that 1 is surjective (in this case, one can
actually check that ¢(F.(1)) = 1), and thus R is F-pure.

If instead of F; we choose F5 as the base field, then the same argument does not work,
since fP~1 = f* € mPl. Fedder’s criterion implies that R is not F-pure in this case.

In general, for f = 23+y3+2% € S, = F,[z,y, 2] with p > 3, one can show that fP~! ¢ m/!
if and only if p = 1 mod 3.

Example 5.20. Let S = F,[z,y, 2], let f =22z —y" for n > 2, and R = S/(f). We have

already proved that R is weakly F-regular (in fact, F-regular), since it is a direct summand
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of a regular ring. To see that it is F-split, observe that fP~! contains in its support the
monomial (72)P~! ¢ mlPl. It follows from Fedder’s criterion, Theorem 5.17, that R is F-split.
If we consider the map ¢(—) = ®(F,(fP'y*~!)—) € Homg(F,(R), R), then one can check
that ¥(F.(1)) = 1, so that ¢ is a splitting of 1 — F,(1). Observe that, more generally, we
can easily find maps ¢;(—) = ®(F,(fP~'y?~177)—) that split 1 — F,(y7) forall 0 < j < p—1.

Fedder’s criterion holds more generally for rings that are quotient of a regular local ring
(not necessarily complete with perfect residue field) or a graded quotient of a graded poly-
nomial ring over a field (not necessarily perfect). Moreover, the assumption that R is a
quotient of a regular ring is not very restrictive. This is clear when R is complete by Cohen’s
structure theorem or when R is F-finite by Gabber’s Theorem 4.8.

We now turn our attention to strongly F-regular rings. We recall that we are always
assuming that R is F-finite, even when we do not write it explicitly. We start with an
example

Example 5.21. Let S = F,[z,y, 2], let f = 2z —y" for n > 2, and R = S/(f), as in
Example 5.20. We have already shown that we can find splittings of 1 — F,(y?) for all
0 < j < p— 1. Clearly there is no hope to split the map 1 — F,(y?) = yF.(1), since any
R-linear map ¢ : F,(R) — R will be such that ¢(yF.(1)) = y(F.(1)) € (y). However,
we can split 1 — F2(y?) (in fact, we will see that, in this ring, for every ¢ # 0 there exists
e > 0 such that 1 — F£(c) splits). Along these lines, we now show that, for e > 0, one
can split 1 — Ff(x) and, with a symmetric strategy, 1 — F¢(z). Let e > 0 be such that
p® > n. Note that (z2)P"~2y" appears with coefficient p° — 1 = —1 # 0 in the expansion
of f7°~1, and therefore 27 ~2(yz)P"~! appears with the same coefficient in the expansion of
g = —fP7lzyP" 717" The map ¢(—) = ®°(F¢(g)—) € Homp(F¢(R), R) is then such that
P(Fe(z)) = ®¢(F(gx)) = O(F((zyz)P 1)) = 1. We will show that, in this ring R, for
e > 0 one can actually split 1 — F¢(c) for any ¢ # 0.

Definition 5.22. An F-finite ring R is said to be strongly F-regular if, for every ¢ € R°,
there exists e > 0 such that the map R — F¢(R) sending 1 — F¢(c) splits.

Some easy facts, that follow from the definitions and what we have proved so far are:

e Strongly F-regular are F-pure (choosing ¢ = 1 in the definition). In particular, they
are reduced.

e If there exists ¢ € R° and e > 0 such that the map 1 — F¢(c) splits, then R is F-pure.
In fact, the splitting is a surjective Cartier map, and R is F-pure by Lemma 5.8.

e If the map 1+ F¢(c) splits for some e > 0, then 1~ F¥ (c) splits for every e’ > e.
In fact, assume that 1 — F£(c) has a splitting ¢.. Since R is F-pure, for every ¢’ > 0
we have a splitting 7. of the map 1+ F¢'(1). For every ¢/ > e, we have that

FE (e Vel -

Fe~¢(R)—“ R

FY(R)
F(¢c) ————— F“°(1) ———— 1

is a splitting of 1 — F¢(c).
The main reason why strong F-regular singularities were introduced by Hochster and
Huneke is to that, contrary to weak F-regularity, strong F-regularity localizes, as we will

show next. We first record a useful remark.
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Remark 5.23. Let R be a ring, and M, N be finitely generated R-modules. Given a multi-
plicatively closed system W and a map ¢ € Hompg,, (M, Ny ) = (Homg(M, N)),;,, we can
find ¢ € Homg(M, N) and w € W such that ¢ = wi. In particular, if R is an F-finite ring
and W a multiplicatively closed system, then given a map ¢ : F,(Ry ) — Ry we can find a
map ¢ : Fi.(R) — R and an element w € W such that ¢ = wi.

Proposition 5.24. Let R be an F-finite ring. The following are equivalent:

(1) R is strongly F-reqular

(2) Rw is strongly F-regular for every multiplicatively closed system W.
(3) Rp is strongly F-reqular for all P € Spec(R).

(4) Ry, is strongly F-regular for every mazimal ideal m of R.

Proof. Let Min(R) = { Py, ..., P;}. First assume that R is strongly F-regular, and let W be
a multiplicatively closed system. Let = € Ry be an element not in any minimal prime of
Ry. Assume that Py, ..., P, are the minimal primes of R which contain ¢, and P4, ..., P;
are those which do not. Observe that P, ..., P, cannot be minimal primes of Ry, that is,
P,NW # 0 forany j =1,...,t. If we pick ¢ € (P41 N...NP;) N (P U...UDP,), then the
image of ¢ in Ry is zero (since R is I-pure, hence reduced) and, in particular, £ = %C/ in
Ry . Moreover, because of our choice we have that c+¢ € R°. Since R is strongly F-regular,
there exists e > 0 such that the map R — F¢(R) sending 1 — Fe(c+ ') has a splitting, say
¥, which induces a map Yy : Ff(Rw) — Rw sending F?¢ (C+C ) |—> . The compositions

S Fe(Rw) —— R

F(Rw)

P () = B () e B () !

give the desired splitting of the map Ry — F¢(Ryw ) sending % — F¢ (i)

The implications (2) = (3) = (4) are trivial. Now assume that R, is strongly F-regular
for every maximal ideal m. Let ¢ € R°, and for every maximal ideal m choose e(m) > 0
such that the map Ry — F£™ (Ry) sending T FE™ (¢) splits. Let 1y be a splitting. By
Remark 5.23 there exists f, ¢ m and a map ¢, € HomR(FG(m)(R), R) such that fot, =
Ym. As a consequence, gom(Fe(m( )) = fm. Consider the ideal J = (f, | m maximal
ideal of R). Then J = R, since no maximal ideal of R contains it. Therefore, there exist
maximal ideals my,...,m, and elements ry,...,r, € R such that > " rifa, = 1. Let
e = max{e(my),...,e(m,)}, and ¢; = e — e(m;). Since Ry, is F-pure for all maximal ideals
m, it is F-pure by Proposition 5.7. We can then find splittings 7., : F¥(R) — R of the map
1 — F¢(1). Then we get compositions

F:i m; (fmjl 1) €
Fe(R) ——2", pei(R) Fo(R) ! R
Ff(C) Ffl(fmz) Ffl(ftﬁ?) fszez< )—>fmz
which we call §;. We finally claim that 6 = Z?:l r;0; is the desired splitting. In fact, we
have that §(F¢(c)) = > 1 rifm, = 1, as desired. O

We will now show that F-finite regular rings are strongly F-regular, as a consequence of

Kunz’s theorem, and that strongly F-regular rings are F-regular.
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Theorem 5.25. Let R be an F-finite ring. If R s reqular, then R is strongly F-regular.
If R s strongly F-regular, then it is F-reqular; in particular, strongly F-regular rings are
Cohen-Macaulay and normal.

Proof. By Proposition 5.24 we may assume that (R, m) is local. By Kunz’s Theorem, F¢(R)
is a flat R-module for every integer e > 0, finitely generated by assumption. Therefore F¢(R)
is projective, and hence free, since R is local. Let ¢ € R°, and let e > 0 such that ¢ ¢ mll.
Then Ff(c) ¢ mFS(R), that is, F(c) is a minimal generator of F¢(R), by Nakayama’s
lemma. Since F¢(R) is free, F¢(c) can actually be made into part of a basis. Thus, we may
define a n R-linear map Ff(R) — R which sends F¢(c) to 1 and every other basis element
to any element of R; for instance, to zero. This is the desired splitting of 1 — F¢(c).

For the second claim, thanks to Proposition 5.24, it suffices to show that every ideal of
a strongly F-regular ring is tightly closed. To prove this, we repeat the argument that we
sketched at the beginning of the section: if I C R is an ideal, and x € I*, then there
exists ¢ € R° such that F¢(c)x € [F¢(R) for all e > 0. But for e > 0 we can find ¢ €
Hompg(F¢(R), R) such that ¢(F¢(c)) = 1. It follows that x = ¢(Ff(c)x) € w(IFE(R)) C 1.

Since every F-finite ring is the homomorphic images of a regular ring by 4.8, strongly
F-regular rings are Cohen-Macaulay and normal by Proposition 3.5 and Theorem 3.7. [

The next result is an extension of Proposition 3.9.

Proposition 5.26. Let R C S be F-finite domains such that R is a direct summand of S.
If S is strongly F-regqular, then R is strongly F-regular.

Proof. We fix a c € R° C S° = S\ {0}. Since S is strongly F-regular, there exists e > 0
and an S-linear map ¢, : F£(S) — S which is a splitting for the map S — F£(S) sending
1 — Ff(c), that is ¥.(F¢(c)) = 1. Let p : S — R be a splitting for the inclusion R C S.
Then the composition pot), : F¢(S) — R is an R-linear map sending F¢(c) — 1. Restricting
this map to F(R) yields an R-linear splitting F°(R) — R such that F¢(c) — 1. Therefore,
R is strongly F-regular. O

The previous result allows us to construct many examples of strongly F-regular rings.

Example 5.27. Let k be an F-finite field of characteristic p > 0.

(1) We consider a power series ring S = k[zy, ..., 24] and a finite group G acting linearly
on S such that p 1 |G|. As we saw in Example 3.10, R is a direct summand of S, which
is regular (so strongly F-regular by Theorem 5.25), hence R is strongly F-regular as
well. In particular, all rings of Example 3.10 are also strongly F-regular.

(2) Let R = k[x,y,u,v]/(zy —uv). Then R = k[a, b|#k[c, d] = k[ac, bd, ad, bc] is a direct
summand of S = k[a,b,c,d]. Therefore, R is strongly F-regular. More generally,
Segre products of polynomial rings are strongly F-regular.

Another way to see that Example 5.27 (2) is strongly F-regular is given by the following
very useful result.

Proposition 5.28. Let R be an F-finite ring, and ¢ € R°. If R. is strongly F-reqular and
there exists eg > 1 such that the map R — F©(R) sending 1 — F(c) splits, then R is

strongly F-reqular.
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Proof. Observe that R is F-split by Lemma 5.8 (4). Let d € R°; since R, is strongly F-
regular, and d € (R.)°, there exists ¢/ > 0 and an R,-linear map F¢(R.) — R. sending

—F*ell(d) — 1. By Remark 5.23, there exists N > 0 and a map v : F¢(R) — R sending
Fe(d) — V.
Let ¢, denote the splitting of 1 — F¢(1). For e > 0, since F () is F¢ (R)-linear, it

sends Fe+e (dP") = F¢(d) - F+¢ (1) to F¢ (d). Define .. as the following composition

/ /
P (@) Fe (pe)

Fete'(R) ——n5 P+ (R) ———— F¥(R) ———— R

Fete'(d) s Ft(dP) s F(d) ————— N
Relabeling, this gives a set of maps 7. € Homg(F¢(R), R) such that v.(F¢(d)) = ¢V for all
e>=e.

In a similar way, since F°(y,) is F®(R)-linear, it sends FeT0(cP") = F(c) - F€Te(1) to
Feo(c). In particular, for all p¢ > N, if we define by d.,, the composition

_Fe+eo (cpe_N)

Fereo(R) —

FO(pe)

Fereo(R)

Foo(R)——— R
Fe#0(¢N) iy P40 () by F0() b |

then relabeling this gives a set of maps d, € Homz(F¢(R), R) such that §.(F¢(cV)) = 1 for
all e > eg such that p© > N. For e > 0, we can therefore consider the map ¢ = §. 0 F¢(~.) €
Hompz(F?¢(R), R), which is such that ¢(F2¢(d)) = §.(F¢(cV)) = 1. O

Example 5.29. Let S = F3[X], where X = B ;] , and let R = S/(det(X)), as in Example

5.27 (2). By Fedder’s criterion, an R-linear map ¢ : F,(R) — R corresponds to an element
in (det(X)B ;g det(X)) = (det(X)?) = (2%y* + zyuv + u*v?). Consider the element o =
yuv det(X)?, and the map p(—) = ®(F.(a)—). One can readily check that ¢(F.(z)) = 1,
and therefore ¢ splits the map 1 — F,(z). Since

]FB[xv Y, u,, x_l]

e = (y — uvx=1) = Falo el

is regular, hence strongly F-regular, the ring R is strongly F-regular by Proposition 5.28.

6. F-INJECTIVITY AND F-RATIONALITY

6.1. A short recap on local cohomology. We briefly recall a few ways to define local
cohomology modules supported at an ideal. Let R be a ring, and I C R be an ideal,
generated by x1,...,x;. Let M be an R-module. The i¢-th local cohomology module of M
with support in I, denoted, H%(M), can be equivalently defined in one of the following ways:

(1) The Cech complex

) a0 t ot
C 00— M- @ My, = D, My, — ... —— M,y —— 0
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is the complex whose maps are (up to sign) just the natural localization maps. For
instance, if t = 2, then

8°(m) = (??) e M, @& M,,,

and

b 2
81 my My o mq mo o mi1Ty — Moy M
a b ____b_—e z1T2"

a a b
Ty o Ty Zo T1To

One can check that, with appropriate choices of sign, the one above is indeed a
complex. Then Hi(M) = H(C").

(2) For every N let K% = K*(zV,...,2N) be the Koszul complex on 2V, ... zN. There
the direct limit lim (K} — K3 — ... K3 — K5, — ...) = K2, coincides with the
n—oo

Cech complex C°, so that Hi(M) = Hi(K2, ®r M). For example, for t = 2:
0 0 0

M M2 M,, & M,,
23 —a7] 5 g
My M,
0 0 0

(3) The surjections ... — R/I""' — R/I™ — ... — R/I? — R/I induce maps
Ext(R/I, M) — Extm(R/I?, M) — ... Exth(R/I™, M) — Exth(R/I™ M) — ...
(not necessarily injections). Then Hi(M) = lim Exty(R/I", M).
n—oo
(4) Let I';(—) be the left-exact covariant /-torsion functor, defined as I';(M) = (Jn (0 1
IN). Then Hi(M) is the i-th right derived functor of I';(—).
Remark 6.1. Let [ = (xy,...,2;) be an ideal of R and let M be an R-module.

e If follows immediately from the last two definitions of H%(M) that this module only
depends on the radical of the ideal I, i.e., Hy(M) = H'(M).
e It follows from the first definition that H:(M) =0 for all i > ¢ + 1 and

t
Hi(M) = Mxr-wt/zlm (Mxl--'wiqxwr--xt) :
i=1
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6.2. F-injectivity. If ¢ : R — S is a ring homomorphism, and [ = (z1,...,2;) C R is
an ideal, then there is a natural map é.(:cl,...,xt;R) — é.(ap(xl),...,go(xt);S), which
gives a map on local cohomology modules: Hi(y) : Hi(R) — Hig(S), where we notice that
IS = (p(z1),...,0(x¢))S. In our case of interest, we will consider a local ring (R, m), the
Frobenius map F' : R — R, and I = m. Note that F(m)R = m/ has the same radical
as m. Therefore H! ,(R) = H}(R). This fact, together with the previous discussion, gives
Frobenius maps H' (F) : H:(R) — H!(R) on local cohomology modules. If no confusion
arises, we will denote each map H (F) still by F.

Even if R is reduced, that is, F' is injective, there is no guarantee that F' is injective on

Example 6.2. Consider the one-dimensional local domain R = Fs[z, y]/(z*—%?). Since R is
Cohen-Macaulay, the only non-vanishing local cohomology module is HL (R). Moreover, since
V/ (z) = m, we can compute it using the Cech complex on x, thus we obtain H.(R) & R,/R.

Note that n = [yﬂ # 0in H}(R): otherwise, there would exist r € R such that % = 7 and,

since R is a domain, it would immediately follow that y? € (z) inside R. But this is clearly
10

false. However, note that F(n) = [y—] =0, since y'* = y(y3)® = y(z?)? € (2°) in R.

5

Definition 6.3. A local ring (R, m) is said to be F-injective if the Frobenius map F' :
H!(R) — H.(R) is injective for every i. A ring R is F-injective if Ry, is F-injective for every
maximal ideal m of R.

Since H:(R) = H%(E), and the Frobenius map is the same whether we consider the local

cohomology as a module over R or over R, we immediately have that R is F-injective if and
only if R is F-injective.

Remark 6.4. If (R, m) is an F-injective ring of positive dimension, then H2(R) = 0. Other-
wise, there would exists 0 # r € m such that m™r = 0 for N > 0. However, F' : H2(R) —
HY(R) is injective, and thus F¢(r) # 0 for all e > 0. But then F¢(r) = r?" € m*" 1y =0 for
e > 0, a contradiction.

Proposition 6.5. Let R be an F-pure ring, then R is F-injective.

Proof. Both notions are local at maximal ideals, so we can assume without loss of generality
that (R,m) is local. We prove the statement only in the case when R is F-finite. By
Corollary 5.5, R is F-split, so there exists a splitting p : F,(R) — R such that po F' = idp,
where F': R — F,(R) is the Frobenius homomorphism. The map p induces a natural map
on local cohomology modules H: (p) : H: (R) — H.(R) for any i. By functoriality, this map
is such that H{ (p) o H,(F) = idp; g). So the map Hj(F) = F : H,(R) — HJ(R) splits,
hence it is injective. U

We are going to prove that F-injectivity localizes. To do so, we need local duality, which
we briefly recall here. For more details, see for instance [BS13].

Let (S,n) be a complete Gorenstein local ring of dimension d (of any characteristic). We
denote by Es(S/n) the injective hull of the residue field S/n, that is the smallest injective
module containing S/n. Equivalently, Es(S/n) is an injective S-module and an essential
extension of S/n, i.e., for any submodule H of Eg(S/n), if H NS/n = 0 then H = 0.

The injective hull of S/n exists and is unique up to isomorphism. The functor (—)" =
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Homg(—, Fs(S/n)) on the category of S-modules is called Matlis dual functor. It gives
isomorphisms

Hi(M) = Exté(M,S),

for any 0 < i@ < d and any finitely generated S-module M. When (R, m, k) is a com-
plete Cohen-Macaulay local ring of dimension d with canonical module wg, and M is a
finitely generated R-module, Matlis duality gives rise to the following isomorphisms known
as Grothendieck’s local duality (see [BH93, Theorem 3.5.8]):

Hi: (M) = Homp(Exts (M, wg), E(k)), and
Exth (M, wg) = Homg(HEH (M), E(k)).

The last isomorphism with M = R and ¢ = 0 yields the fact that the Matlis dual of the
top-dimensional local cohomology module of the ring is isomorphic the canonical module:

Hi(R)v = Hompg(R,wgr) = wg.

Proposition 6.6. Let (R,m) be an F-finite F-injective local ring. Then Ry is F-injective
for every multiplicatively closed system W . In particular, R is reduced.

Proof. By definition, F-injectivity is tested locally at maximal ideals. So to prove that Ry
is F-injective it is enough to prove that (Ry ), is F-injective for any maximal ideal m of
Ry,. But any prime ideal of Ry is just a prime ideal P of R that does not intersect W,
sO0 (Rw)m = Rp. Therefore we may assume without loss of generality that W = R~ P for
some P € Spec(R), and prove that Rp is F-injective. We show that we can also assume that
R is complete. Clearly, R F-injective implies R F-injective. Let P € Spec(R) and choose
a minimal prime () of PR such that dim Rp = dim ]/%Q. The local ring map Rp — EQ is
faithfully flat. Moreover, notice that PEQ and QEQ have the same radical. Therefore we
obtain an isomorphism in local cohomology HéﬁQ(]-AZQ) = Hpp, (Rp) g, }A%Q for all ¢ which

is compatible with the Frobenius action. Thus, if the Frobenius is injective on Hé?% (1?2@),

ie., if }A%Q is F-injective, then it is also injective on H};RP(RP), i.e., Rp is F-injective.

As explained above, now we assume that (R, m) is a complete local ring, P € Spec(R)
and we prove that Rp is F-injective. By Cohen’s Structure Theorem, there exists an n-
dimensional regular local ring (S,n) such that R = S/I for some ideal I C S. Let @ be
the lift of P to S. By local duality, we have isomorphisms H;;(R)v >~ Exte (R, S), where
(=) = Homg(—, Eg(S/n)) is the Matlis dual functor. Let us view the Frobenius map
F : H:(R) — HL(R) as an R-linear map ¢ : H.(R) — H.(F.(R)). Then, this map is
injective if and only if its Matlis dual

@' Extt(F.(R),S) — Exti (R, 9)
is surjective. Therefore, if R is F-injective then ¢ : Exty™'(F.(R),S) — Ext§ (R, S) is
surjective for all i, and therefore FV : (Extg *(F.(R),5))q — (Exty (R, S))q is surjective
for every i. Since localization is flat, we have that (Ext§(R,5))q = Ext§ '(Rg,Sq);
moreover, since R is F-finite, we have that (Ext%'(F.(R),S))q = Extg;i(F*(R)Q,SQ) =

Extggi(F*(RQ),SQ). Note that clearly Rg = Rp. To conclude the proof of the first part,
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observe that S is again a regular local ring; applying local duality over Sg we conclude that
dim Sg—n+1i dim Sg—n+1i
o:Hpp, N (Rp) — Hpp, N (F(Rp))

is injective for all 7, that is, (Rp, PRp) is F-injective. Observe that, in order for the isomor-
phism Extggi(RQ,SQ)v = Hld;;lPSQ_”J”(Rp) to hold, it is not required that S and Rp are
complete.

Finally, to see that R is reduced, observe first of all that F-injective rings have no embedded
primes. If P was an embedded prime, then Rp would be an F-injective ring of positive
dimension such that Hpp, (Rp) # 0, which would contradict Remark 6.4. Moreover, if P €
Min(R), then since Rp is F-injective we have that Frobenius is injective on Hpp (Rp) = Rp.
Therefore Rp is reduced for every minimal prime of R, that is, Rp is a field. Now, if we
consider an irredundant primary decomposition (0) = Q1 N...NQ;, then we have that each
QQ; corresponds to a minimal prime P; and, since Rp, is a field, we have that Q;Rp, = P,Rp.,.
Since @); is P;-primary, it follows at once that (; = P; for all 7, and R is reduced. 0

6.3. F-rationality. Now, we introduce the last notion of F-singularity we are going to study.

Definition 6.7. A local ring (R, m) of dimension d is said to be F-rational if it is Cohen-
Macaulay, and for every ¢ € R° there exists an integer e > 0 such that the map cF*° :
HI(R) — HZ(R) is injective. A ring R is F-rational if R, is F-rational for every maximal
ideal m of R.

It is clear that F-rational rings are F-injective. Using this observation, it also becomes
clear that a Cohen-Macaulay ring R is F-rational if and only if for every ¢ € R° the map
cFe: HI(R) — HZ(R) is injective for all e > 0. In fact, if it is injective for one single e > 0,
then for € > e the map c¢F* is obtained as the composition of the injective maps cF¢o F¢ ¢,
where F¢~¢ is injective since R is F-injective.

6.3.1. F-rationality and tight closure. The original definition of F-rationality requires that
every ideal generated by a system of parameters (even partial) is tightly closed. We now
show that this is equivalent to the one given above for rings that are the homomorphic image
of a Cohen-Macaulay ring.

We first discuss some facts about the top local cohomology modules.

Using the K2 definition of local cohomology, and using the right exactness of direct limits,
one can see that if I = (z4,...,2;), and x = x - - -z, then H}(M) is the direct limit of the
system

M/(z1,. .., x)M =5 M/(23,. . a2)M =5 M/(23, ... a8)M — ...

When zq,..., 24 is a full system of parameters, i.e., a system of parameters such that
I = (xy,...,24) is an m-primary ideal, then thanks to the above an element n € H(R) can

be seen as a class [%} for some t > 0 and r € R, where x = z - - - 4. In this way, n = 0 if and

only if % maps to zero in the direct limit as above, if and only if z"r € (277, ... 2% for

xt
some (equivalently, all) n > 0, if and only if r € (z}*, ..., 2"") :g 2" for some (equivalently,
all) n > 0. Note that, when R is Cohen-Macaulay, this is equivalent to r € (x},..., z}),
since x1, ..., x4 forms a regular sequence.
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Finally, when R has characteristic p, one can readily check that the Frobenius map F':
HZ(R) — HZ(R) is such that F(n) = F ([%]) = [55]. Therefore, if R is Cohen-Macaulay,
cFe(n) = 0 is equivalent to ¢ € (2, ..., 2.

For the reader’s convenience, we collect the previous observations in the following lemma.

Lemma 6.8. Let (R, m) be a local ring of dimension d, let xi,...,xq be a full system of
parameters, let v = x1--- x4, and let n = [ﬁ} € HI(R) forr € R and t > 0. Then the
following facts holds.

(1) F(n) = [].

(2) n=104f and only if r € (a7, ..., 2*") 1 2™ for some (equivalently, all) n > 0.

(3) If R is Cohen-Macaulay, then n =0 if and only if r € (2%,... ).

Theorem 6.9. Let (R, m) be a local ring of dimension d which is the homomorphic image of
a Cohen-Macaulay ring. Then R is F-rational if and only if every ideal (x4, ..., x;) generated
by a system of parameters is tightly closed.

Proof. First assume d = 0. If R is F-rational, then R is a field, since HJ(R) = R and
F : R — Risinjective. Thus the only proper ideal is (0), and it is tightly closed. Conversely,
if the only ideal generated by a system of parameters (i.e., (0)) is tightly closed, then R is
reduced, and thus it is a field. So R is F-rational.

Now assume d > 0. Assume that R is F-rational, let [ = (z1,...,24) be any ideal generated
by a full system of parameters, and let © = xy - - - z4. If € R is such that ¢r? € I9 for some
¢ € R° and all ¢ = p° > 0, then the element n = [£] is such that ¢cF*(n) = 0 in HZ(R) for all
e > 0. Since R is F-rational, we conclude that n = 0, that is, » € I, and thus I = I*. Now

let xq,...,x; be any system of parameters, and complete it to a full system of parameters:
XT1yeeesTpy Tig,---,2q. Forall N > 1 we have that
N N N N
(@1, )" C (1, T Ty, T ) = (@1, T T, -, T ),
and therefore (z1,...,2¢)" C \yoy (@1, @) + (g, 2 ) = (21, ..., 1)

Conversely, assume that every ideal generated by a system of parameters is tightly closed,
and observe that R is Cohen-Macaulay by colon capturing, Theorem 3.6. First, we show
that R is F-injective. If n = [5] € HZ(R) is such that F(n) = [Z5] = 0, then we have that
rP € (xf,..., 25 and this implies that r¢ € (2%,...,2%) for all ¢ = p°. In particular,
re(x,... 2l = (24, ..., 2,), and therefore n = 0.

Now, let ¢ € R°, and for e > 0 define N, = ker(cF*®). We claim that each N, is an
R-module, and N.,; C N, for all e > 0. Clearly each N, is an Abelian group. If » € R and
n € N, then cF(rn) = r? cF¢(n) = 0, and thus rp € N,. If n € Ny, then F(cF¢(n)) =
?Fet(n) = 0. Since R is F-injective, it follows that cF¢(n) = 0, and thus n € N.. We have
a descending chain of R-submodules of H%(R):

Ni DNy DNg...DONg D Neyp 2.

which must eventually stabilize because H¢(R) is Artinian. Let ey be such that N, = N,
for all e > e. If N,, # 0, that is, there exists 0 # n € HZ(R) such that cF®(n) = 0, then
by what we have shown above we have that cF(n) = 0 for all e > e. If we write n = [%],
then this means that cr? € I9 for all ¢ > 0, where I = (2},...,2%). Since [ is tightly closed
by assumption, we have that r € I, so that 7 = 0. This shows that N,, = 0, so that cF'® is

injective . As ¢ € R° was arbitrary, it follows that R is F-rational. O
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Corollary 6.10. Let (R, m) be a local ring which is the homomorphic image of a Cohen-
Macaulay ring. If R is weakly F-reqular, then it is F-rational. Moreover, if R is F-rational,
then it is a normal domain.

Proof. The first claim follows immediately from Theorem 6.9. For the second, observe that
the proof of Proposition 3.5 that weakly F-regular rings are normal only requires that (0)
and ideals generated by a single regular element are tightly closed, which is still true if R is
F-rational. U

Examples 6.11. It follows from Corollary 6.10 that all weakly (and strongly) F-regular rings
of Examples 3.10 and 5.27 are also F-rational. An example of non F-rational singularity is
given by the following ring from Example 1.19. Let R = F,[x,y, 2]/(2? — y® — 27), then the
ideal generated by parameters (y, z) is not tightly closed, since x € (y, 2)* \ (v, 2). Therefore
R is not F-rational.

One may wonder whether, similarly to weakly and strongly F-regular, a direct summand
of an F-rational or F-injective ring is still F-rational or F-injective. This is false in general,
an example has been constructed by Watanabe. We record the example here, but we refer
the reader to [MP21, Remark 9.4] or to the original [Wat97] for details and proofs.

Example 6.12. Let R = F3[z, y, 2]/(2?+y3+2°) with grading deg(x) = 15, deg(y) = 10, and
deg(z) = 6. Then R is a two-dimensional normal domain which is a direct summand of an

F-rational ring. However, R is not F-injective. In fact, the cohomology class [%} € H:(R)

3
PG - =] -
Yz Y-z
since 2° € (y°,2°)R. On the other hand, if we consider T = F,[z,y, z]/(2? + y* + 2°)
where p > 5 is a prime number, it is well known that 7" is isomorphic to the invariant ring

T = F,[u,v]* known as Eg-singularity. Here, Z C GL(2,F,) is the binary icosahedral group
of order 120. In particular, 7" is strongly F-regular and so also F-rational.

is nonzero, but

We saw that a local ring (R, m) is F-injective if and only if R is F-injective. One may
wonder whether the same is true for F-rational as well. One direction is easy. Namely,
assume that R is F-rational and I is an ideal of R generated by a system of parameters.
Since R — R is a faithfully flat ring extension, by Proposition 2.8 we have

I"=(I*R)NRC (IR NR=(IR)NR=1.

Therefore I is tightly closed, and R is F-rational. The implication R F-rational = R F-
rational holds if R is F-finite (or more generally if R is excellent). We record here the result
without proof (for a proof see [BH93, Corollary 10.3.19] or [MP21, Theorem 6.16]).

Theorem 6.13. Let (R, m) be a local F-finite ring. Then R is F-rational if and only szAi is
F-rational.

6.3.2. F-rationality localizes. Now, we show that F-rationality localizes. While this can
be proved using the local cohomology definition using a strategy similar to that of Proposi-
tion 6.6, we will show it by proving the more general fact that tight closure of ideals generated
by regular sequences commutes with localization.

We start with a lemma.
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Lemma 6.14. Let R be a Noetherian ring, I C R be an ideal, and W be a multiplicatively
closed system. There exists s € W such that, for all m > 1, we have

U @™ pw) = (I 5 s™).

weWw
Proof. Let G = gr(R) = @D, I™/I"*! be the associated graded ring of R with respect to I,
which is a Noetherian ring. Consider the set S = {anng(w) | w € W}. Since G is Noetherian,
S has a maximal element anng(s), for some s € W. In particular, anng(s) = anng(sw) for
all w € W, by maximality. Let m > 1, and x € (J,,cpy (I™ :r w), so that wx € I™ for some
w € W. Let t > 0 be such that z € I* ~\ I'*L. If t > m, then clearly x € I"™ C (I™ :z s™).
Otherwise, swz = 0 in G implies that x € anng(sw) = anng(s), so that sz = 0 in G. This

implies that sx € I'*!. Repeating the argument with sz in place of z, eventually yields that
sz € I'™, as desired. [l

Corollary 6.15. Let R be a Noetherian ring of characteristic p, and I be an ideal generated

by a reqular sequence of x1,...,xq. Let s be as Lemma 6.1/. Then
U ([[q] R W) = ([[q] ‘R S(d+1)q).
weW

Proof. Let « € I9 :p w for some w € W. We prove by induction on n > 0 that y, =
sty ¢ Jl4 4 [t The case n = 0 follows from Lemma 6.14, since sz € I9. Now
assume that y, € 19 4 194" Since wy,, = s7"wz € 119, we can write wy, = Zle rixd.
By induction we also have wy, = Zle wsiz! + Y, wrax®, where a = (v, ..., 04) € N¢
is such that Zle a; =2 q+n, and 0 < o; < ¢ for all i. We may assume that among
the monomials z appearing in the above writing there are no repetitions. Putting the

above relations together we obtain that ) wreaz® = Zle(ri — ws;)z! € I, Since the
elements xy,...,z, form a regular sequence, and each monomial z® = z{" - -- z? does not

belong to I'9, we obtain that each wr, € I. It follows that sr, € I for all «, and thus
Ynsl = SYp = 2?21 ssixd + 30, srar® € 119 4 [[97" = [l 4 [atn+1 a5 desired. Finally,
since I is generated by d elements, it is easy to see that /%@~D+1 C Jld by the pigeon hole
principle. It follows that y,, = s{D4x € 119 4 [(@+De C [ld which concludes the proof that

x € (114 :p sldHDa), O

Theorem 6.16. Let R be a ring of characteristic p > 0, and x1, ..., xq be a reqular sequence.
Let I = (z1,...,24q), and W be a multiplicatively closed system. Then I* Ry = (IRw)*. In
particular, if R is an F-rational ring, then Ry, is F-rational for every multiplicatively closed
system W.

Proof. We prove the first claim. Without loss of generality we may assume that I Ry # Ry,
otherwise the equality is trivial. We have already observed that I*Ry C (I Rw)* always
holds. For the converse, let £ € Ry, be such that < 2% ¢ Jld R, for some < € (Rw)° and

w’ wd
all ¢ = p° > 0. Let s € W be as in Lemma 6.14, so that |J, oy (119 :g w) = (119 :5 s(@T19)
for all ¢ = p°. By prime avoidance, we may find ¢ € R° such that CT/ = { in Ry. By

clearing denominators, we can find w(q) € W such that w(q)c/z? € I9 for all ¢ > 0. By
Corollary 6.15, we have that stz = ¢/(s%+12)7 € 119 for all ¢ > 0, from which we get

that stz € I*. It follows that £ € I* Ry, as desired.
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The proof of the second claim now follows from the first. In fact, if R is F-rational, then
it is Cohen-Macaulay, and so is every localization at a multiplicatively closed system W. By
definition, F-rationality is tested locally at maximal ideals; therefore, by the same argument
of the proof of Proposition 6.6 without loss of generality we may assume that W = R~ P
for some P € Spec(R). If x1,...,x4 € R are such that their images in Rp form a system of
parameters, then they are also a system of parameters in R, and hence a regular sequence.
We have shown above that ((xy,...,24)Rp)* = (z1,...,24)*Rp = (x1,...,24)Rp, where
the last equality follows from Theorem 6.9 and our assumption that R is F-rational. This
proves that ideals generated by arbitrary system of parameters in Rp are tightly closed, and
therefore Rp is F-rational, again by Theorem 6.9. U

6.3.3. Smith’s characterization of F-rationality. Now, we give a third characterization of F-
rationality in terms of local cohomology due to Karen Smith. This is crucial for the geometric
interpretation of F-rationality, and we will also use it to prove the so called deformation

property.

Definition 6.17. Let (R,m) be a local ring and let N C H!(R) be an R-submodule. We
say that N is F-stable if F(N) C N, where F: H.(R) — H:(R) is the Frobenius action on
local cohomology.

Theorem 6.18 (Smith). Let (R, m) be an F-finite local ring of dimension d. Then the
following are equivalent:

(1) R is F-rational.

(2) R is Cohen-Macaulay and HS(R) has no proper nonzero F-stable submodule.

Proof. We recall that local cohomology commutes with completion, and moreover the Frobe-
nius structure on HZ(R) is unaffected when passing to the completion. So by this observation
and by Theorem 6.13, we can assume without loss of generality that (R, m) is complete.
First, assume that (1) holds, i.e., R is F-rational. Let N C H%(R) be an F-stable sub-
module. By local duality, we obtain an epimorphism Hgi(R)V ~ wrp — NY — 0. Since R
is a normal domain (Corollary 6.10), wg is torsionfree of rank 1. Therefore NV, and thus
N, is a torsion module. Hence, there exists ¢ # 0 such that ¢- N = 0. If N # 0, then take
any nonzero 7 = [2] € N, where z is a system of parameters for R. Since N is F-stable,

F(N) C N, thus cF¢(n) = [Cg} = 0 for any e > 0, contradicting the injectivity of the map
cFe: HY(R) — H?(R). Hence N = 0.

Conversely, assume that (2) holds. We observe that R is F-injective, otherwise the kernel
of the Frobenius F : HS(R) — HZ(R) would be a nonzero proper F-stable submodule of

HZ(R). Now, take ¢ € R° and consider the module
T.={ne HYR)| cF*(n) =0 VYe >0}

It is easy to check that T, is an F-stable submodule of H¢(R). Moreover cT,. = 0, therefore
T, # Hi(R). Since Hi(R) has no proper nonzero F-stable submodules by assumption, this
forces T, = 0. This implies that for any n € H4(R), there exists e > 0 such that cF¢(n) # 0.
We define the following family of R-submodules of HS(R):

N, ={ne€ H.R)| cF°n) =0} fore >0

By the previous observation, we have [, N. = T, = 0. Moreover, by injectivity of Frobenius

on H¢(R) we obtain the chain of inclusions Ny O Ny O N3 D ---. Since Hi(R) is Artinian,
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these facts imply that there exists an e > 0 such that N., = 0, which is equivalent to say
that cF® is injective on H4(R), i.e., R is F-rational. O

Theorem 6.19 (Deformation property). Let (R,m) be a local ring and = a reqular element
on R. Then

(1) If R/zR is Cohen-Macaulay and F-injective, then R is Cohen-Macaulay and F-
injective.
(2) If R/xR is F-rational, then R is F-rational.
Proof. (1) It is well-known that R/xR implies R Cohen-Macaulay, so it remains to show

that the action of Frobenius on H¢(R) is injective, where d = dim R as usual. Consider the
following commutative diagram

0 R—"+R—— R/ztR——0

mpe_lFel Fel FGJ(

0 R—%R R/xR——0.

Since R/xz R is Cohen-Macaulay of dimension d—1, its only non zero local cohomology module
is H-Y(R/xR). So, the previous diagram induces the following commutative diagram

0—— HYR/xR) —— HY(R) —= HY(R) —— 0

FEJ( xzleEl Fel

0—— HYR/2R) — HL(R) —2+ H(R) —— 0.

Assume by contradiction that the middle map xP*~1F¢ is not injective on HZ(R). Then
ker(xP*~1F¢) is a nonzero submodule of H%(R) which is Artinian. Therefore ker(zP"~!1F°)
has nonzero intersection with the socle of HZ(R) which is an essential submodule. Thus,
there exists 0 # n € HE(R) such that 27" ~1F¢(n) = 0 and x - = 0, thus by exactness of
the rows of the diagram 7 is coming from H4"'(R/xR). By diagram chasing, this yields
F¢(n) = 0 in HIY(R/zR) contradicting the F-injectivity of R/xR. Therefore, the map
P Fe . HY(R) — HY(R) is injective. This forces the injectivity of F© on HS(R), that is
R is F-injective.

(2) We take ¢ € R° and consider the F-stable submodule T, = {n € Hi(R) | cF¢(n) =
0 Ve > 0}. Reasoning as in the proof of Theorem 6.18, it is enough to show that 7. = 0.
Assume by contradiction that T, # 0, then also Soc(HZ(R))NT, # 0 since HE(R) is Artinian
so its socle is an essential submodule. This implies the existence of a nonzero n € H(R)
such that cF¢(n) = 0 for all e > 0 and 2n = 0. We write ¢ = 2™¢, where ¢ ¢ (z) and
n € N. Choose ey > 0 such that p®® — 1 > n. We consider the commutative diagram of local
cohomology modules as in (1). Since cF¢(n) = 0 for any e > 0, by our choice of ey we have
also ¢zP*~1F®(n) = 0. Moreover, since zn = 0 we know that 1 comes from HZ '(R/zR).
Therefore the commutativity of the diagram yields ¢ F(n) = dzP*°~1F(n) = 0, and so
dF¢(n) = 0 for all e > 0. On the other hand, R/zR is a normal domain, since it is F-
rational, so ¢ # 0 in R/xR, that is ¢ € R°. Thus, the condition ¢/ F*(n) = 0 contradicts the
injectivity of the map ¢'F¢: Hi"1(R/xR) — HY 1 (R/xR) for e > 0, hence the F-rationality
of R/xR. Hence, T, = 0 and we are done. U
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6.3.4. Rational singularities. We conclude this section with a brief informal discussion about
the connection of F-rationality with an important geometric definition in singularity theory:
the notion of rational singularity. Let X be a normal variety over an algebraically closed field
k. A resolution of singularities for X is a proper! birational map f : W — X such that W is
non-singular. A point € X is said to be a rational singularity if there exists a resolution of
singularities f : W — X such that (R*f,Ow), = 0 for all # > 1, where R’f,(—) denotes the
i-th right derived functor of the direct image functor f.(—) (cf. [Har77, §II1.8]). Since this is
a local condition, in practice it suffices to compute the higher direct images sheaves when X
is affine, and in this case R f,Oy is the sheaf associated to the module H (W, Oy, ). In the
case that X = Spec(R) is a surface, with (R, m) local normal domain, this condition can be
further rephrased in a number of ways. For example, there exists among all resolutions of
X a minimal resolution m: X — X such that any other resolution factors through (X, 7).
Then, the origin © = {m} € X is a rational singularity if and only if H'(X,O%) = 0, that
is the geometric genus of X is 0, or, equivalently, the arithmetic genus of X and X is the
same.

Resolution of singularities are known to exists over fields of characteristic 0 by the work
of Hironaka or if the dimension of X is at most 2, but the problem of their existence is still
open for higher dimension in positive characteristic. For this reason, Lipman and Teissier
introduced the notion of pseudo-rationality, which coincides with rationality for rings that
are localization of affine domains over fields of characteristic 0. The definition of pseudo-
rationality is quite technical and we do not present it here. We limit ourselves to mention
that using the characterization of F-rationality of Theorem 6.18, Karen Smith proved that
F-finite (and more generally, excellent) rings which are F-rational are pseudo-rational. We
refer to [Smi97| for the definition of pseudo-rationality and the proof of this result.

Finally, we consider the following situation. Let R = k[z1,...,z,]/(f1,..., fm) be an
affine algebra over a field k£ of characteristic 0 such that the polynomials fi,..., f,, have
coefficients in Z. Then Zlxy, ..., z,]/(f1,..., fm) is a free Z-module and we can consider its
reduction modulo p for any p prime: R, = Z/pZ[xy,...,z,)/(f1,..., fm). We say that the
ring R has F-rational type it R, is F-rational for all but finitely many prime numbers p. If
X is a scheme of finite type over k, and x € X is a closed point, we say that x has F-rational
type if x has an open affine neighbourhood defined by a ring of F-rational type. The scheme
X has F-rational type if every point x of X has F-rational type.

Theorem 6.20 (Smith and Hara). Let X be a scheme of finite type over an algebraically
closed field of characteristic 0. Then X has F-rational type if and only if X has rational
singularities.

1A morphism of varieties ¢ : W — X is proper if for every valuation ring V with morphism « : Spec(V) —
X, there is a unique morphism £ : Spec(V) — W such that ¢ o 8 = a.
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7. FURTHER RELATIONS BETWEEN F-SINGULARITIES

So far, given an F-finite ring we have proved the following implications:

regular == strongly F-regular == F-regular == weakly F-regular == F-rational

ﬂ

F-split «<——= F-pure ————= F-injective

To complete the picture of the known implications which always hold between F-singularities
we need to prove that weakly F-regular rings are F-split. In order to do so, we need some
preliminary results.

When (R, m, k) is local, there is a useful criterion to verify whether a map is pure. Recall
that the injective hull £ := Eg(k) of the residue field k is an injective R-module such that
k C E is an essential extension. The latter means that for every non-zero submodule N C F
one has N Nk # 0. The injective hull E exists, and it is unique up to isomorphism.

Remark 7.1. For convenience of the reader, we recall some of the equivalent definitions of
a Gorenstein ring. For a proof, see the standard references of this course (e.g., [BH93] or
[BS13]). A local ring (R, m, k) of dimension d is Gorenstein if R is Cohen-Macaulay and one
of the equivalent conditions holds:

(1) E= Hy(R);

(2) For some (equivalently, all) system of parameters (z1,...,z,), the Artinian ring R =
R/(z1,...,74) is such that soc(R) = 0 :3 m is a 1-dimensional k-vector space;

(3) For some (equivalently, all) system of parameters (zy,...,z,), the Artinian ring R =
R/(x1,...,x4) is injective as a module over itself.

Remark 7.2. If R is an Artinian Gorenstein ring and M is any R-module, then any injective
map R — M splits. This can be seen for instance recalling that R is injective as a module
over itself, and therefore one obtains a splitting of the inclusion as follows:

S
idRT AN
AN
00— R— M

Moreover, since when (R, m) is Artinian the extension soc(R) C R is always essential, when
R is Gorenstein the map f : R — M is injective (hence split) if and only if f(d) # 0 for
any generator § of soc(R). Note that, in these assumptions, R = E. More generally, if
f: E — M is a map of R-modules, and soc(F) = (u), then f is split if and only if it is
injective, if and only if f(u) # 0.

We now recall some facts that will be very useful in the rest of this section.

Proposition 7.3. Let (R,m, k) be a local ring, with injective hull of the residue field k C E.

(1) The R-module E is Artinian (not Noetherian, unless dim(R) = 0).
(2) If M is an Artinian R-module, there is an injection M — E®' for some integer t > 0,
called the type of M.
(3) For any a € E there exists a positive integer n = n(a) such that m"a = 0. Equiva-
lently, H)(F) = E.
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(4) If R is an excellent reduced ring (e.g. complete or F-finite and reduced), or has depth
at least two, then R is approzimately Gorenstein, that is, there exists a sequence of
nested ideals {1 }+>1, cofinal withe the powers of the mazimal ideal, such that R/I; is
Artinian Gorenstein for all t > 1. Moreover, E = limy_,o, R/I;.

The first three claims are standard facts about the injective hull of the residue field; for
instance, see [BH93|. The first claim of (4) can be found in Hochster’s work on purity VS
cyclic purity [Hoc77]. For the last claim, observe that if R is approximately Gorenstein
with respect to a sequence {I;}, then we may assume without loss of generality that ,,1 C
I; for every t. Observe that, since I; defines a Gorenstein Artinian ring, one has that
Hompg(R/1I;, Er(k)) = Egyr,(k) = R/1,;. In particular, since the powers {I;} are cofinal with
the maximal ideal, the inclusions I, ,; C I, and the Ext-definition of local cohomology yield

E = HY(E) = lim Homg(R/I;, E) = lim R/I,.
t—o0 t—o0
The following result will be crucial in the rest of the section.

Proposition 7.4. Let f: (R,m) — S be a ring map, and assume that R is approzimately
Gorenstein with respect to a family of ideals {I,}. The following are equivalent:

(1) f is pure.

(2) fryr: R/1 — S/IS is injective for all ideals I C R.

(3) fi: R/I; — S/1S is injective for all t > 0.

(4) fg: E — S®g E is injective.

(5) If u denotes the image of 1 € k inside E, then fg(u) # 0.

Proof. (1) = (2) = (3) are clear. The fact that (3) implies (4) follows from the afore-
mentioned fact that £ = tlim R/I;. Clearly (4) implies (5). Assume (5), and assume by
—00

contradiction that f is not pure. Since tensor products commute with direct limits, and
every R-module is a direct limit of finitely generated R-modules, f is pure if and only if
fv s M — S®pg M is injective for every finitely generated R-module M. Let M be a finitely
generated R-module, and assume that fy;(«) = 0 for some o € M. Because M is finitely
generated, there exists n € N such that a ¢ m"M, since (,., m"M = (0). Then @ # 0 in
M/m™M, and there is an induced map fasjmnar : M/m"M — S @r M/m"M. Observe that
fatjmnae (@) is still zero. Summing up, if f is not pure, we can find an Artinian module M
such that fj; is not injective. Since M is Artinian, there is an injection ¢ : M — E®, which
induces a commutative square

frot

E@t S ®nr EEBt

L ids®¢

M— g M
By assumption, fr(u) # 0, and since u generates soc(E) by previous considerations we have
that fg is injective. Thus, (fz)®" = fge: is injective. Chasing the diagram, this gives that

fur is injective, a contradiction. 0]
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Condition (2) of Proposition 7.4 is sometimes referred to as cyclic purity, since purity is
tested only for cyclic modules.

Theorem 7.5. Let R be a weakly F-regular ring. Then R is F-pure.

Proof. Since both weak F-regularity and F-purity are local issues at maximal ideals, we may
assume that (R, m) is local and weakly F-regular. Then R is normal by Proposition 3.5. If
dim(R) < 1 then R is regular, and we are done. If dim(R) > 2, then R satisfies Serre’s
condition (Ss), and in particular depth(R) > 2. Therefore R is approximately Gorenstein
with respect to some family {I;}. Suppose that R — F.(R) is not pure. Then there exists
t > 0 such that R/, — F.(R)/I;F.(R) is not injective, that is, there exists r € R \ I; such

that r € I, Fi.(R). As the latter is equivalent to 7 € It[p], this implies that r € I choosing
c =1, and thus r € I; because R is weakly F-regular; a contradiction. 0]

Remark 7.6. Given an ideal I C R, the Frobenius closure of I is defined as I" = {z € R |
24 € 19 for all g = p° > 0}. Note that I C I C I*. Proposition 7.4 shows that if R is
excellent, then R is F-pure if and only if I = I for all ideals I C R. The forward direction
is clear, since the map ¢g/; : R/I — F¢(R)/IF{(R) is injective for all ideals / and all e > 1
if R is F-pure. Conversely, the fact that (0) = (0)¥ implies that R is reduced, and thus
approximately Gorenstein. Our assumption guarantees that ¢p/; : R/I — F¢(R)/IF{(R) is
injective for all ideals I and all e > 1, and by Proposition 7.4 we conclude that R is F-pure.

Theorem 7.7. Let R be a Gorenstein ring. If R is F-injective, then R is F-pure. If R 1s
F-rational and F-finite, then R s strongly F-regular.

Proof. All issues are local at maximal ideals, therefore we may assume that (R, m) is a d-
dimensional Gorenstein local ring. Let z1,...,x4 be a full system of parameters, and let
Iy = (2%, ... 2h). Observe that R is approximately Gorenstein with respect to the family of
ideals {I;}.

First assume that R is F-injective. Consider the map ¢ : R — F,(R) sending 1 — F,(1).
By Proposition 7.4 it suffices to show that ¢ ® R/, is injective for all ¢ > 0. Assume by way
of contradiction that ¢ ® R/I; is not injective for some ¢ > 0. This means that there exists

r € R~ I;, and such that r? € It[p]. If we consider the element 1 = [%}, where x = x1 - - - g,
then 1 # 0 but F'(n) = 0, contradicting our assumption. This shows that R is F-pure.

Now assume that R is F-rational and F-finite. Let ¢ € R°, and let e > 0 be such that
cFe : HY(R) — HZ(R) is injective, which exists by assumption. We claim that the map
e : R — F¢(R) defined as 1 — F¢(c) splits. Note that, since R is F-finite, ¢, splits if and
only if it is pure. By way of contradiction, assume that . is not pure, so that p. ® R/I; is

not injective for some ¢ > 0. This means that there exists r € R ~\ I; such that cr? = It[q]
for ¢ = p°. If we let n = [ﬁ} € HY(R), then n is a non-zero element in the kernel of cF®,
which contradicts our assumptions. Therefore ¢, is pure, hence split, and R is strongly

F-regular. U

We update the diagram of implications:
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+Gorenstein

regular == strongly F-regular == F-regular == weakly F-regular == F-rational

T~ ! ﬂ

F-split <——= F-pure =———= F-injective
v
+Gorenstein

We end the section by discussing why certain arrows in the above diagram are not re-
versible, in general.

We start with the two most challenging ones, which still constitute one of the biggest open
problem in the theory of F-singularities.

Conjecture 7.8. Weak and strong F-regularity are equivalent.

Not much is known about this conjecture (or even about the intermediate converse impli-
cations) outside the Gorenstein case. M.P. Murthy showed that weakly F-regular rings of
finite type over an uncountable field are F-regular, that F-regular rings essentially of finite
type over a field of characteristic p > 5 are strongly F-regular up to dimension four [AP19].
Moreover, it is known that weak and strong F-regularity are equivalent if R is N-graded over
a field [1.S99], or if R is Q-Gorenstein on the punctured spectrum (a finiteness condition
on the canonical module as an element of the class group). The full conjecture is known in
dimension up to three as a consequence of the previous claim, since 2-dimensional local rings
with at worst rational singularities have finite class groups thanks to a result of Lipman.

It is very easy to find an example of an F-pure ring that is not weakly F-regular (or
F-rational). In fact, since weakly F-regular and F-rational local rings are normal do-
mains, it suffices to take any Stanley Reisner ring which is not regular. For instance,
R =TFp[z, y]/(zy).

Continuing with other F-singularities, there are several examples of strongly F-regular
rings which are not regular. For instance, any Veronese subring of a regular local ring is
strongly F-regular, since it is a direct summand. However, such rings are typically singular;
for an explicit example, take R = F,[s?, st, ?] 2 F,[z,y, 2]/ (zz — y?).

The arrows “pointing to F-injectivity” are also not reversible, in general.

Example 7.9 (Fedder, Singh). Let R = F,[z,y, z,w]/(xy, z2,y(z — w?)). If we let [ =
(w?(z? — y*)) and o = y*w?, then we claim that o ¢ I, but o? € I?), In fact, modulo I!
one has:
of = yPw P = y P2y = w2y = 0,

where we used that y?w = yz in R, 3p — 2 > 2p and y*Pw? 2 = 2%w*~2 modulo I,
Now let us give degrees deg(z) = deg(z) = 2 and deg(y) = deg(w) = 1. Then R is graded,
and both a and I are homogeneous. If o € I, then there exist homogeneous elements
A B,C,D e S =TF,z,y, z,w| such that in S one has:

y'w® = A(w(2® —y")) + Blay) + Claz) + D(y(z — w?)).

By looking at degrees, we see that A has to have degree one, and thus A = A(y,w). For
this reason, it is easy to see that A must be zero modulo (y), and therefore A = Ay for some
A eF,.

42



Going modulo (z, ), we get the equality y*w? = —\y’w? — Dyw?, where D is the image
of D in S/(z,z). We get that D = y3w + \y*, and therefore D = y3w + \y* + D', where
D’ € (z,2)S. Substituting, we get a new equality 0 = Az*yw? + B(zy) + C(zz) + D'(y(z —
w?)) + y*zw + A\y®z. Dividing by y and regrouping, we can find homogeneous polynomials
F,G such that 0 = Fr + G(z —w?) + y*2w + Ay*z. Going modulo (), in S/(z) 2 F,[y, z, w]
we get an equality yzw + \y*z = —G(z —w?). Dividing by y%z we get w+ \y = —G(z —w?),
which is a contradiction, since the left-hand side has degree one, while z — w? has degree
two. Therefore o ¢ 1.

The above claims show that the map R/I — F,(R)/IF.(R) is not injective, and therefore
R is not F-pure. Since R is not a domain, it cannot be F-rational. Finally, note that
w is a regular element for R, and R/(w) = F,[z,y, 2]/(zy, xz,yz) is F-split. Since R is
Cohen-Macaulay, it follows from Theorem 6.19 (1) that R is F-injective.

Finally, it is harder to find an example of an F-rational ring which is not weakly F-
regular. Again, such an example cannot be Gorenstein, by what we have shown above. The
best known way to obtain such examples come from a geometric construction, masterfully
used by K.I. Watanabe to construct the following example.

Example 7.10 (Watanabe). Let R be the localization of F[t, xt*, 27 1t*, (z — 1)7'¢*] at the
obvious maximal ideal. Then R is F-rational, but is not even F-pure (hence not weakly F-
regular). We do not show here the details, and we refer to [MP21, Example 9.1 and Remark
9.2| for a proof of these facts.

8. HiLBERT-KUNZ MULTIPLICITY

Let (R, m, k) be a Noetherian local ring of Krull dimension d, let I be an m-primary ideal,
and let M be a finitely generated R-module. The Hilbert-Samuel function of I and M is the
numerical function HSg(I, M, —) : N — N defined as

HSg(I,M,n) = (g (M/I"HM) ,

where /r(—) denotes the R-module length. For n > 0, this function takes the shape of
a polynomial of degree d in n called Hilbert-Samuel polynomial. The leading coefficient of
this polynomial is e(Ié!M), where e(I, M) is an integer called Hilbert-Samuel multiplicity (or
simply multiplicity) of I and M. For I = m, M = R, we usually write e(R) = e(m, R) and
call it multiplicity of the ring R. The Hilbert-Samuel function and multiplicity capture many
important information about the ring.

If we assume further that R has positive characteristic p, then we can replace ordi-
nary powers of the ideal I by Frobenius powers I"] and study the corresponding lengths
lr (M/I[pe]M) for increasing values of e. This is the approach developed by Kunz in the ’60.
He was the first to show that the lengths £z(R/mlPl) encode information about the singu-
larities of the ring. Years later, Monsky resumed Kunz’s idea and defined the Hilbert-Kunz
function and multiplicity which are the main object of investigation of this chapter.

8.1. Rank of Ff(R) and Kunz’s Theorem revised. Let R be a Noetherian ring. We
recall that an R-module M is said to have rank r if M ® @ is a free (Q-module of rank
r, where () is the total ring of fractions of R. If M is finitely presented module, then the
following facts are equivalent (see e.g. [BH93, Proposition 1.4.3|):

(1) M has rank r;
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(2) M has a free submodule F of rank r such that M/F is a torsion module.

Now, assume that (R, m, k) is local of positive characteristic p and Krull dimension d. During
the proof of Kunz’s Theorem 2.7, we saw that if R is regular, then the R-module F.(R) is
free of rank [F.k : k]p?. Using a similar argument, we can compute the rank of F¢(R) also
when R is not regular.

Theorem 8.1. Let (R,m, k) be an F-finite local domain of dimension d. Then for each
e € N we have that rankp(F¢(R)) = [F°k : k]p?

Proof. Assume first that R is complete. By Cohen’s Structure Theorem there exists a power
series subring A = k[x1,...,24] € R such that R is a finitely generated A-module. Then we
have a commutative diagram of local domains:

A———R

Fe(4) — FE(R)
which implies
rank 4 (FY(R)) = rankg(F(R)) - ranka(R) = rankpea)(F5 (R)) - rank 4 (Fy (A)).

Now, the local extension A — R is isomorphic to Ff(A) — Ff(R), therefore ranks(R) =
rankpe(a) (F(R)). Thus, we obtain rankg(F¢(R)) = rank(F¢(A)). As we saw in the proof
of Theorem 2.7, F(A) is a free A-module of rank rank(F¢(A)) = [F¢k : k]p?. A basis as
A-module is given by

{Fe(af - ) | 0<i; < p®and {F\} is a free basis of F°k over kY.
Finally, suppose that R is not necessarily complete. Let P be a minimal prime of the
completion R such that d = dim(R) = dlm(R/P) Let K be the fraction field of R and L
the fraction field of R/ P. Since P is a minimal prime of R and R is reduced by Lemma 4.7,
we have in fact that L = Rp. Then, we have the following chain of isomorphisms

FE(L) = (FA(R))p = FS(R) ®f Rp = FS(R) ®r R @z Rp = F(R) @ Rp = F£(K) @k L.
Therefore, we have Ff(L) = F¢(K) ®x L, and in particular, [F¢(L) : L] = [FS(K) : K].
Thus we obtain

rankp(F(R)) = [F£(K) : K] = [F£(L) : L] = rankg p(F (R/P)) = [Fok < K]p?
where the last equality follows from the first part of the proof since }A?,/ P is complete. 0

Remark 8.2. Let K be an F-finite field. Every element F,(r) of the Frobenius push forward
F.(K) satisfies the monic polynomial equation 2 —r = 0. Therefore the degree of the
minimal polynomial of every element of F,(K) divides p. It follows that [F,K : K| = p®
for some o € N and by iterating the Frobenius map we obtain also [FfK : K] = p for
every e € Z,. Therefore, for an F-finite local domain (R, m, k) of dimension d, we have
[Fik 1 k] = p*, where a = log,([F.k : k]) is an integer. Thus, we can write the rank of F(R)
in Theorem 8.1 also as rankg(F¢(R)) = p*(@+®),

We collect in the following lemma some useful properties of the length function under local

ring extension.
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Lemma 8.3. Let ¢ : (R,m) — (S,n) be a local homomorphism.
(1) If M is an R-module of finite length and ¢ is flat then

ls(S @r M) = lr(M) - £s (S/mS).
(2) If N is an S-module of finite length and [S/n: R/m| < oo then
(r(N)=[S/n:R/m]-ls(N).

Remark 8.4. Let R be F-finite and M a finitely generated R-module of finite length, then
also F¢(M) has finite length. So Lemma 8.3 (2) applied to the Frobenius R — F¢(R) yields

Cp (FE(M)) = [Fok = K- Lreqy (FE(M)) = [Fok = K] - Cr(M).
Moreover, for any m-primary ideal I we have
(g (F{(M) ®g R/T) = lr (F7(M)/I1F(M))
= (g (F2(M/17100))
= [FSk : k) - g (M/IPIM)

In particular, when I = m by Nakayama’s Lemma the left hand side of the previous chain of
equalities is precisely g (F£(M)), the minimal number of generators of F¢(M) as R-module,
thus

pr (FS(M)) = [Fok < k] - Cp (M/mPI0) .

Remark 8.5. For a local ring (R, m, k) the m-adic completion R — R is a flat map, so by
Lemma 8.3 (1), when we compute the length of an R-module M we can assume without loss
of generality that R is complete. Similarly, taking the algebraic closure of the residue field
is also a flat map, so we can also assume that k is algebraically closed.

Theorem 8.6 (Kunz). Let (R, m, k) be a local F-finite ring of dimension d. Then
lr (R/m[pe}) > p% Ve > 0.
Moreover, the following facts are equivalent:
(1) R is reqular;
(2) g (R/mlPl) = p% for some e > 0;
(3) lg (R/m[p N = p? forall e > 0;
(
(

) ¢
3) ¢
4) FE(R) is R-free for some e > 0;
5) F¢(R) is R-free for all e > 0.

Proof. To prove the first statement, observe that going modulo a minimal prime will only
potentially decrease (g (R/m[pe}). Therefore we can assume that R is a domain. Moreover,
we may also assume that R is complete and £ is algebraically closed thanks to the previous
observation. By Theorem 8.1, F¢(R) is a finitely generated R-module of rank p?, therefore
we have ug(F¢(R)) > p® with equality if and only if F¢(R) is free. By Nakayama’s Lemma
(see Remark 8.4) we obtain

g (R/mlPl) = 5 (FE(R)/mFS(R)) = pr(FE(R)) > p*

with equality if and only if F¢(R) is free. This shows the first claim and the equivalences
(2) & (4) and (3) & (5). By Kunz’s Theorem 2.7 we have that R is regular if and only if

F¢(R) is flat for some (equivalently for all) e > 0, but for a finitely generated module over
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a local ring being flat and free are equivalent. This shows the remaining equivalences and
completes the proof. 0

8.2. Existence of the HK multiplicity. From now on, let (R, m, k) be a Noetherian local
ring of prime characteristic p > 0, and Krull dimension d.

Definition 8.7. Let [ be an m-primary ideal of R, and let M be a finitely generated R-
module. The function
HKRp(I, M, e) = (g (M/I¥IM)
is called Hilbert-Kunz function of I and M. When M = R we will denote the function also
by HKg(I,e), and if further I = m we denote the Hilbert-Kunz function simply by HKg(e).
The limit
. HKR(I, Mu 6)

lim ———=

e—00 pde
is called Hilbert-Kunz multiplity of I and M and denoted by egk (I, M). We set also egk (1) =
enk (1, R) and egk(R) = eux(m), the latter is also called Hilbert-Kunz multiplicity of R.

It is not clear from the definition that the limit defining the Hilbert-Kunz multiplicity
always exists. In fact, although this function was first studied by Kunz at the end of the
60’s, the existence of the limit was proved only later by Monsky in 1983. The rest of this
section is devoted to the proof of the the existence of the Hilbert-Kunz multiplicity. We will
follow Monksy’s original path with few adaptations.

Lemma 8.8 (Lech’s Formula). Let (R,m) be a Noetherian local ring of Krull dimension
d, let x1,...,xq be a system of parameters generating an ideal J, and let M be a finitely
generated R-module. Then
L e (M M)
min{a;}—oco ai -+ aq
where e(J, M) denotes the Hilbert-Samuel multiplicity of J over M.

=e(J,M),

Proof. It M is maximal Cohen-Macaulay the formula follows easily from the fact that
e(l, M) =Llgr(M/IM) for any m-primary ideal I. A proof of the general case can be done by
induction on d. We refer the interested reader to [HS06, Theorem 11.2.10| for details. O

We will often use the following standard notation.

Notation 8.9. For two functions f,g : N — R we write f(n) = O(g(n)) if there exists a
constant C' > 0 such that |f(n)| < C - g(n) for all n > 0.

Lemma 8.10. Let I be an m-primary ideal of R, and let M be a finitely generated R-module,

then

HKRr(I, M, e)
pde

I. M HKR(I,. M
e, M) <liminf—R< M,e) < lim sup

d! €—00 pde e—00

<e(l,M).

Proof. Since we are considering lengths we can assume without loss of generality that the
ring R is complete and the residue field k is algebraically closed. Let J C I be a minimal
reduction. Since [ is m-primary, J is generated by a system of parameters xy,..., 4. We
have inclusions JP C Il C IP° which imply inequalities

b (M) JPIM) > g (M/IPIM) > g (M/I" M),
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where (p (M/IPIM) = HKg(I, M,e) and (g (M/IP°M) is the Hilbert-Samuel function of
I and M. We recall that /g (M/IPSM) — %pde + O(p'4=1¢). So dividing the previous
. . HKR(L M7 6)
<liminf —————~=

e—00 pde

e(I,M)

inequalities by p?® and letting e — 0o we obtain immediately p

(p°]
Moreover, by Lech’s Formula (Lemma 8.8) we have ZR(M;+M) — e(J, M) = e(I, M) since

J is a minimal reduction of I. This gives the other inequality and completes the proof. [J

The previous lemma has some immediate consequences. First, it gives an upper bound for
the Hilbert-Kunz function, and then it gives the existence of the Hilbert-Kunz multiplicity in
dimension one. Also, observe that as consequence of Lech’s Formula, for ideals generated by
a full system of parameters, the Hilbert-Kunz multiplicity coincides with the Hilbert-Samuel
multiplicity. We state these facts as separate corollaries.

Corollary 8.11. Let I be an m-primary ideal of R, and let M be a finitely generated R-
module, then there ezists a positive constant C'= C'(I, M) € Ry such that

HKR(I,M,e) < C - pdimM
for each e € N. In particular, if dim M < dim R then epgx (I, M) = 0.

Proof. If dim M = dim R = d, the conclusion follows directly from the statement of Lemma 8.10.
For the case dim M < d, we can reason as follows. Take an element f € Anng(M) such that
dimR/f < d and let A= R/f. Since M is finitely generated as R-module it is also finitely
generated as A-module. In particular, there exists a surjective map ¢ : A™ — M. Tensoring
with R/I[pe] preserve surjection, so we get

HKR(IgM,e) =/l (M/[[PE]M) =04 (M/I[Pe]M) <n-ly (A/][pe]A) <C_pedimA

where the second equality holds since A and R have the same residue field and the last
inequality holds by Lemma 8.10. An induction argument on dim M concludes the proof. [

Corollary 8.12. Let x1,...,xq be a full system of parameters generating an ideal J, and let
M be a finitely generated R-module. Then epx(J, M) = e(J, M).

Corollary 8.13. Let dim R = 1 and let I be an m-primary ideal, then the Hilbert-Kunz
maultiplicity of I exists and exx(I) = e(I).

Proof. Simply set d = 1 in the statement of Lemma 8.10. O

When R is a one-dimensional local ring, the Hilbert-Kunz function of an m-primary ideal
I takes the shape HKg(1,e) = e(I)p®+ p(e), where ¢ is a bounded function. Monsky proved
that ¢ is periodic. However, determining ¢ explicitly is not easy in general.

Example 8.14. Consider the quotient ring R = k[, y]/(x® — 4°), where a > b are positive
integers. Since dim R = 1, by the previous results the Hilbert-Kunz function of R takes the
following form

HKg(e) = enx(m)p° + pau(e),
where egk(m) = e(m) = b is the Hilbert-Samuel multiplicity of R and the function ¢, ;(e) is
periodic. In order to compute ¢, ;(e) more explicitly, recall that

HKp(e) = dimy k[, y] /(2" 4", 2* = y").
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So we need to count monomials x'y’ with 0 < 7,7 < p° paying attention that the relation
2% — y® forces to identify some of them. More precisely, we obtain
waple) =#{(i,7)) EN*: i—r > (a—B)a, 0<i<a, 0<j<pl,

where j = fb+5s,0< s <b, p° =aa+r, 0 <r < a. Forexample, fora =5b=>5and p=+2
mod 5, the Hilbert-Kunz function of R = k[z,y]/(2° — y°) has periodic part equal to

(c) = —4 for e even
7557 26 for e odd.

If dim R > 1, then the conclusion of Corollary 8.13 does not hold in general. In fact, the
Hilbert-Kunz multiplicity is not necessarily an integer as the following example shows.
Example 8.15. We consider the A,-singularity R = k[x,vy, 2] /(y*> — x2), where k is a field
of characteristic p > 2. A direct, but tedious, computation shows that

3 1
HKg(e) = =p* — -.
r(e) 5P 5

Proposition 8.16. Let [ be an m-primary ideal and let M, N be finitely generated R-
modules. We set W = R\ \J, s, where the union runs over all minimal primes P; of R
with dim R/ P; = d. If My = Ny, then

HKR(I, M, e) — HKz(I, N, e)| = O(p'4=Ve).
In particular, enk (I, M) = enx (I, N) and if one ezists, also the other erists.

Proof. Since My, = Ny then there exists ¢ : M — N whose cokernel C' = Cokery is
annihilated by some f € W. Consider the exact sequence M — N — C — 0 and tensor
with R/IPl. We obtain

M/IPIM — N/IPIN — C/1P1C — 0.

Taking lengths we obtain HKz (I, N,e) < HKg(I, M, e)+HKRg(I,C, e). Now, we observe that
dimC < d since fC = 0 for f € W, i.e., Anng(C) contains a regular element. Therefore,
by Corollary 8.11 HKg(I, C,e) = O(p'®~V¢). Interchanging the role of M and N gives the
desired conclusion. 0

Proposition 8.17. Let I be an m-primary ideal, and let 0 - N — M — L — 0 be a short
exact sequence of finitely generated R-modules. Then we have

HKR(I, M,e) = HKg(I, N, e) + HKg(I, L, e) + O(p'4=be).

In particular, we have
euk ([, M) = enx (I, N) + enx (1, L),
provided the limit defining egk (—) exist.

Proof. 1) Assume first that R is reduced. Then if P is a minimal prime of R, Rp is a field,
thus Mp = Np @ Lp and the claim follows from Proposition 8.16.

[’
2) If R is not reduced, choose €' > 0 such that ( (0)) = 0 and consider the sequence
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0— N — M - L — 0 as a sequence of ]I%pe/—modules. We apply 1) to this sequence, the
ideal I 1N R, and the reduced ring R?" . This yields

HKR(I, M,e+¢') = HKg(I,N,e 4+ ¢') + HKg(I, L, e + ¢') + O(p!~1°).
On the other hand, O(p!@=1¢) = O(pl@=1(e+¢))  So the proposition is proved. O

Theorem 8.18 (Monsky). Let I be an m-primary ideal and M a finitely generated R-module.
Then the Hilbert-Kunz multiplicity enk (1, M) ezists. In particular, we have

HKg(I,M,e) = eHK([,M)pde + O<p(d71)e)‘

Proof. As already observed, we can assume R complete and k algebraically closed without
loss of generality. We take a filtration 0 C My C M; C --- C M,, = M where M; /M; =
R/P; with P; € Spec(R). Therefore, by applying Proposition 8.17 we can reduce to the
case where M = R/P with P € Spec(R). So without loss of generality, we assume that
M = R domain. Moreover, since R is complete with algebraically closed residue field it is
F-finite (see Remark 4.5). So, by Theorem 8.1 the module F,(R) is finitely generated and
torsion-free of rank p?. In particular, we have short exact sequences

0 — R®" - F.(R) —» C; — 0

0= F.(R) > R%" — 0y — 0
with dim(C), dim(Cy) < d. Applying Proposition 8.17 to these sequences yields

HKR(I7 F*(R), 6) — HKR<I, R@pd7 @)‘ < D. p(dfl)e

for some constant D > 0. Now, observe that HKg(I, F.(R),e) = (g (F.(R)/IPIF.(R)) =
(r(R/IPY and HKgR(I, R®" ¢) = (g (R/IPT) p? since R%" is free of rank p?. We set
ce = lp (R/IPT) p=@°. From the previous inequality we get [ces1 — o] < ]%. This shows
that c. is a Cauchy sequence. In fact, for any € > 0, choose N > 0 such that z% < e. Then

for any e + ¢ > e > N we have

|Ce+e’ - Cel - |Ce+e’ — Ceqel'—1 T Ceqerm1 =+ Ceq1 — Ce|
o D D D
~ pe+e’+1 + pe+e’ Tt pe+1
/N
D (&K1 D
TN+ ( Z i < pN+1€‘
i=e—N
Therefore, c. = HKZ’;(EI’G) converges to a real number egk (/). Observe that for every e, e’ we

have that [ceper — co| < 1%' By multiplying this relation by p® and letting ¢/ — oo we get
that | eqk (I)p°® — HKg(I, R, €)| < Dp'~V¢, which also gives the last claim. O
Proposition 8.19. Let I be an m-primary ideal and M a finitely generated R-module. Then
enx (L, M) = ZGHK(L R/P)g, (Mp),
P

where the sum runs over all minimal primes P of R with dim(R/P) = d.
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Proof. By Proposition 8.17 and Theorem 8.18, the Hilbert-Kunz multiplicity is additive on
short exact sequences. We take a filtration 0 € My € M; C --- C M, = M where
M;1/M; = R/ P; with P; € Spec(R). If dim(R/P;) < d then egk (I, R/P;) = 0, thus by using
additivity of HK multiplicity, we obtain that egx(/, M) is the sum of egx(/, R/P) for those
primes with dim(R/P) = d counted as many times as R/P appears as one of the quotients
M;1/M;. We can count this by localizing at P. One sees that the filtration reduces to a
filtration of Mp, but then all terms collapse except for those with (M;1/M;)p = (R/P)p,
which are exactly as many as (g, (Mp). O

Corollary 8.20. Let (R, m) be a Noetherian local domain, let I be an m-primary ideal and
M a finitely generated R-module. Then

eHK(I, M) = GHK(I, R) . rankR(M).

Proof. We set r = rankg(M) and W = R\ {0}. We recall that Ry, = K is the fraction field
of R. Then we have My, = K% = (R®"),,.. Therefore, Proposition 8.16 yields exk (I, M) =
euk (I, R®") = repk (I, R), where the last equality follows from Proposition 8.19. O

We conclude this section with two results that allow us to compute some examples of
Hilbert-Kunz multiplicity.

Lemma 8.21. Let (R,m) be a regular local ring, and let I be an m-primary ideal. Then

Proof. Since R is a regular local ring, by Kunz’s Theorem 8.6 and Theorem 8.1, F¢(R) is
free of rank [F¢k : k]p®. Then, by Remark 8.4 we have

HKg(I,e) = (g (R/I¥))
1

~ lr(R/I @ FS(R))
1 er. . de de
= WER(R/I) [Fek kp™ = Lr (R/T) - p*,.

where the third equality follows from the fact that R/I ® F¢(R) = (R/1)®™™ =) gince
F¢(R) is free. Thus, dividing the previous chain of equalities py p?® and taking the limit for
e — oo yields the desired claim. O

Lemma 8.22 (Watanabe-Yoshida). Let (R,m) C (S,n) be a local extension of local domains
such that S is a finitely generated R-module of rank r and R/m = S/n. Let I C R be an
m-primary ideal. Then

eI, R) = —enc (15, 5).
In particular, if S is regular then enk (I, R) = 205(S/1S).
Proof. Observe that since R/m = S/n, by Lemma 8.3 we have
HKs(1S, S, e) = ls (S/(IS)P) = 15 (S/1WS) = 5 (S/TPS) = HKR(I, S, e).

In other words, the Hilbert-Kunz function over the ring S of the ideal .S and the S-module S

coincides with the Hilbert-Kunz function over the ring R of the ideal I and the R-module S.

Dividing by p® both sides and taking the limit for e — oo yields epx (IS, S) = exx (I, S) =
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repx (I, R), where the last equality follows from Corollary 8.20. Finally, the case when S is
regular follows by combining this with the previous lemma. 0

We can use the previous lemmas to compute the Hilbert-Kunz multiplicity of several
classes of rings.

Example 8.23. Let S = k[zy,...,24], and consider a finite group G acting linearly on
S such that p 1 |G|. We denote by R = SY the corresponding invariant ring as in Exam-
ples 3.10 and 5.27. It is well known from Invariant Theory that R is a Cohen-Macaulay nor-
mal local domain and S is a finitely generated R-module of rank |G|. Thus, by Lemma 8.22
we can compute the Hilbert-Kunz multiplicity of R as egx(R) = \_é’l dimy(S/mS), where m is
the maximal ideal of R. Sometimes this latter dimension is easier to compute. For example,
if G is a cyclic group of order n acting linearly on S by x; — x; where & € k is a primitive
n-th root of unity, then R = S¢ is the n-th Veronese subring of S. In this case we have

eHK(R>:l(d+n—1>‘

n n—1

Another case of interest is when d = 2 and G C SL(2,k). Then the invariant ring R =

klz,y]“ is an ADE singularity and epk(R) = 2 — ﬁ

8.3. HK multiplicity and tight closure. We recall that a local ring R is called formally
equidimensional or (quasi-unmized) if the dimension of the completion of R modulo any
minimal prime is the same, namely the dimension of R. For formally equidimensional rings,
David Rees related the multiplicity of an ideal with its integral closure. Namely, he proved
that if (R, m) is a formally equidimensional local ring, and [ C J are m-primary ideals, then

e(l)=e(J) <= JC1.

In particular, I is the unique largest ideal containing I having the same multiplicity as 1.

Hochster and Huneke proved that a similar relation holds between Hilbert-Kunz multi-
plicity and tight closure. To prove this, we need the following result by Aberbach, which
roughly speaking says that elements not in tight closures are very far from being in Frobenius
powers.

Lemma 8.24 (Aberbach). Let (R, m) be an excellent local domain such that the completion
is also a domain. Let N = lim_,, R/J; be a direct limit system of cyclic modules. Fiz u & 0% .
Then there exists eg > 0 such that

U (Jt[pﬂ : ufe) C mPe ]
¢

for all e > 0 (where the sequence {u;}+ represents u € N).

Theorem 8.25 (Hochster—Huneke). Let (R, m, k) be an ezcellent local domain such that R
15 a domain, and let I C J be m-primary ideals. Then

In particular, I* is the unique largest ideal containing I having the same Hilbert-Kunz mul-
tiplicity as 1.
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Proof. "<" By assumption there is an element ¢ € R° such that ca?” € IP for all 2z € J
and e > 0. In other words, ¢ annihilates all modules JP1/IP°l for p¢ > 0. We observe
that these modules have a bounded number of generators, say ¢, given by the number of
generators of J. In particular, we have a surjective map (R/(c, IP1))®* — JWP1/P°] thus
U (JP/IPT) < telp (R/(c, I¥T)). However, (r (R/(c, I¥1)) = HKg(I, R/c,e) = O(p4=1)°)
since dim R/c = d — 1. Therefore, from the short exact sequence 0 — P — JP7T —
JP/IPT — 0 and additivity of £z(—) we obtain |[HKg(J,e) — HKg(I,e)| = O(pt?=be),
which implies egk (1) = epk (/).

"=" First, we recall that the Hilbert-Kunz multiplicity does not Chan/g\e by passing to com-
pletion, and similarly for any m-primary ideal L we have (E)* = L* since tight closure
commutes with respect to localization at maximal ideals by Lemma 3.3. Hence, we may
assume that R is complete.

Suppose by contradiction that J ¢ I*, then there exists x € J such that = € I**. We can
also assume without loss of generality that J = (x, ). Since x ¢ I*, by Lemma 8.24 there
exists a fixed integer eq > 0 such that for e > 0 we have I : 27" C mlP* ), Therefore, for
e > (0 we have

HKg(I,e) — HKg(J,e) = g (R/I¥) — tp (R/ (1P, 27))
=/lr (R/(I[pe} L 2?))

> (g <R/m[pe*60])
> ope

with § > 0, since (g <R/m[p€75°]> = HKRr(m, e—eg) is the Hilbert-Kunz function of m rescaled

by a factor of eg. In particular, this shows that epk (/) # enk(J) giving a contradiction. [

There is another important and well-known similarity between Hilbert-Samuel and Hilbert-
Kunz multiplicity. Nagata proved that under mild hypothesis the value 1 of the multiplicity
characterizes when the ring is regular. More precisely, if (R, m) is an unmixed local ring, then
e(R) = 1 if and only if R is regular. Watanabe and Yoshida [WY00| provided the following
Hilbert-Kunz analogue of Nagata’s Theorem that we quote here without proof. We recall
that a local ring R is said to be formally unmized if its completion R is unmixed.

Theorem 8.26 (Watanabe—Yoshida). Let (R, m) be a formally unmized local ring. Then
euk(R) =1 if and only if R is regular.

Example 8.27. The condition formally unmixed is necessary. In fact, the ring R =
k[x,y, z]/(zz, xy) is not regular, but egk(R) = 1.

We close this chapter with two remarks concerning the comparison between Hilbert-Kunz
and Hilbert-Samuel function/multiplicity.

Remark 8.28. The Hilbert-Samuel multiplicity e(R) of a local ring (R, m) is always a positive
integer. This is not true for the Hilbert-Kunz multiplicity already in simple cases (see e.g.
Example 8.23). However, for a long time all known examples were rational, so it was thought
that egx (R) would always be a rational number. While this is true for some classes of rings,

such as two-dimensional graded normal rings or binomial hypersurfaces, in 2013 Brenner
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[Brel3] gave an example of a local ring of dimension > 3 with irrational Hilbert-Kunz
multiplicity.

Remark 8.29. The Hilbert-Samuel function HSg(n) takes the shape of a polynomial in n of
degree d = dim R for n > 0. Despite having a polynomial leading term of degree d in p°, in
general the Hilbert-Kunz function HKg(e) is not polynomial in p°. This is true only in very
special cases. However, one may ask whether there exists at least a "second coefficient" for
HKRg(e), that is if there exists 5 € R such that

HKg(e) = enx (R)p™ + Bp'*~ 1 + O(p!=°).
This is known to be true for some large classes of rings. Huneke, McDermott, and Monsky
[HMMO04] proved that, if R is normal, excellent and with perfect residue field, then this is the
case. Chan and Kurano [CK16] proved that the same result holds if one replaces normal with
regular in codimension one. Additionally, Brenner [Bre07| showed that, for standard graded
normal domains of dimension two over an algebraically closed field, the second coefficient 3
equals zero.

9. F-SIGNATURE

In this section we closely follow the approach given in [MP21].

9.1. F-signature exists. Let (R, m) be an F-finite local ring. By Kunz’s Theorem R is
regular if and only if the R-module F¢(R) is free for all/some e > 0. When R is not regular,
in order to measure its distance from being regular Smith and Van den Bergh considered the
free part of the modules F¢(R) and its asymptotic behavior when e grows. Later, Huneke
and Leuschke reprised this idea and defined a new numerical invariant called F-signature.

Definition 9.1. Let (R, m) be a local ring and M a finitely generated R-module. The free
rank of M is the unique integer frkp(M) > 0 such that M admits a direct sum decomposition

M = R®FrM) g N,
where the module N has no free direct summands.

The cancellation property of direct sums over local rings guarantees the existence and
the uniqueness of frkgy M. In particular, we observe that the fact that NV has no free direct
summands is equivalent to requiring that ¢(N) # R for all ¢ € Homg(N, R). Moreover, the
free rank of M can be seen also as the maximum integer n such that there exists a surjection
M — R®". Finally, when the ring R is clear from the context we will omit the subscript
and denote the free rank of M simply as frk M.

Definition 9.2. Let (R, m, k) be an F-finite local domain. The F-signature of R is

- frkg (FE(R))
e—oo rankp (F¢(R))

s(R) =

As for the Hilbert-Kunz multiplicity, it is not clear from the definition that the limit
defining the F-signature always exists. The existence of the limit was proved first in some

special cases, and then in full generality in 2011 by Tucker.
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Remark 9.3. By Theorem 8.1 we have rankg (F¢(R)) = [F°k : k]p?, where d = dim R. So
one may be tempted to replace the denominator in the limit defining the F-signature with
[Fk : k]p? and use this to extend the definition of F-signature also to non domains. On the
other hand, we will see in Theorem 9.9 that s(R) = 0 whenever R is not strongly F-regular.
Thus, we will restrict to the domain case from the beginning.

We need some preliminary results on rank and free rank. First, we observe that for any
finitely generated R-module M we have inequalities:

(1) frkr(M) < rankp(M) < pr(M),

where pr(M) is the minimal number of generators of M. Both inequalities become equalities
when M is free and are strict otherwise. In particular, they tell us that the F-signature is a
real number between 0 and 1.

Lemma 9.4. Let (R, m, k) be a local ring.

(1) If My and My are R-modules, then frkr(M; & M) = frkg(M;) + frkr(Ms).
(2) If M is an R-module with M’ C M a submodule and M" = M/M’, then

fI‘kR(M”) < fI'kR(M) < fI'kR(M/) + MR(M”)-

Proof. (1) If M, = R®F(M) @ Ny and M, = R (M2) gy N, where Ny, Ny do not have free
direct summands, then

Ml D ]\42 — R@(frk(Ml)Jrfrk(Mg)) ® (Nl ® Nz)

[t remains to ShO/YV that N;@® N, has no free direct summands. This can be done by passing to
the completion R of R and using the KRSA property of complete local rings. Alternatively,
one can reason has follows. If ¢ € Homg(N; @ Ny, R), then ¢(N7),¢(N2) € m as Ny, Ny
have no free direct summands. It follows that ¢(N; & Na) = ¢(N1) + ¢(N2) C m as well,
therefore N; @ Ny has no free direct summands.

(2) To prove the first inequality, observe that any surjection M” — R®" induces another
surjection M — R®"™ by pre-composing with the projection M — M /M’ = M". This yields
frkr(M") < frkr(M). We prove the second inequality. We decompose M’ and M as follows

M=R*"@®N and M'=R*"® N’,

where the inclusion M’ C M is given by equality on R®" and an inclusion N’ C N, and
®(N') C m for any ¢ € Hompg(N, R). In other words, n is the maximal rank of a mutual free
direct summand of M and M’. Now, consider a surjection ¢ : N — RPT®™)  Then we have
Y(N') € mfk™) | Therefore, v induces a surjective map M” = M/M’ = N/N' — k") and
hence also M"” /mM" — k™) which shows u(M") > frk(N). Putting everything together,
we obtain frk(M) = frk(R®") 4 frk(N) = n + frk(NV) < frk(M') + u(M"). O

Theorem 9.5 (Tucker). Let (R, m, k) be an F-finite local domain of dimension d. Then the
F-signature of R exists.

Proof. We set ¢, = % for any e > 0, and observe that ¢, € [0,1] by (1). We reason

as in the proof of Theorem 8.18. By Theorem 8.1 the module Fi(R) is finitely generated and
torsion-free of rank [F.k : k]p? = p?* where a = log,[F.k : k]. Therefore, we have short

exact sequences

d+a

0— R - F(R)—C; —0

54



0— F.(R) » R 5, -0
with dim(C}),dim(Cy) < d. Applying the exact functor Ff(—) to the previous sequences
yields

d+a

0—= (FS(R)P T — FY(R) — FS(Cy) — 0

and
0 — FTY(R) — (FS(R)™™" = F*(Cy) — 0.
We apply Lemma 9.4 to the previous sequences to get
| frkg (FE(R)) — frkg (F(R)) - p™ | < max{pg(FE(Ch)), pr(FE(Ca))}-
By Corollary 8.11 and Remark 8.4 there exists a constant D > 0 such that ug(F¢(C;)) <
DpedimCi[Fe k] < Dpld+e=le. Dividing by p(c+D@+) we obtain |coi1 — ¢ < ST
Reasoning as in the proof of of Theorem 8.18, one can show that the sequence {c.}. is a
Cauchy sequence, which implies the existence of the limit lim ¢, = s(R) € R, i.e., the
e—00

F-signature exists. 0

9.2. F-signature and strong F-regularity. The goal of this section is to prove that for
F-finite rings having positive F-signature is equivalent to being strongly F-regular. One
implication is easier and we prove it immediately.

Definition 9.6. Let (R, m) be local and F-finite, and let M be a finitely generated R-module.
For each e > 0, the modules

I.(M)={ce M |R LN FZ(M) does not split}
={ce M| p(F(c)) € m for every ¢ € Homg(F{ (M), R)}

are called Frobenius non-splitting submodules of M. When M = R we will denote them
simply by I, = I.(R).

We prove that I.(M) is actually a submodule of M and some of its fundamental properties.

Proposition 9.7. Let R and M be as above, then the following facts hold.
(1) For any e > 0, I.(M) is a submodule of M and m?"M C I.(M).
(2) For any e > 0, frkg(F¢(M)) = Llg (M/I.(M)) [Ftk : k].
(3) {1.(M)},.. is a descending chain of submodules of M.
(4) If R is strongly F-regular and M is torsion free, then ﬂ I.(M) ={0}.
e>0
Proof. (1) Let my,me € I.(M) and r € R. We prove that rng; + ny € [.(M). This is
equivalent to the condition that there is no splitting ¢ € Hompg(F¢(M), R) such that
©(FE(rm + m2)) = 1. Assume by contradiction that such a splitting ¢ exists. This
implies that (F(rm) + ¢(n2)) = 1. Since R is local, we must have that either
@(FE(rn)) is a unit or (F<(ny)) is a unit. In the second case we get directly that
ne & I.(M). In the first case, since p(F<(r)—) € Hompg(F¢(M), R), we again obtain
that n, &€ I.(M). Either way, we get to the desired contradiction.
(2) We decompose F¢(M) = REFKFLMD BN where N does not contain free R-summands.
Then we obtain F¢(I.(M)) = mF (M) @ N. Therefore

(a (1/1D) = s (FEQ/1,01)) = “HECDEEE GBI BonlCE U0
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(3) We want to show that [.(M) D I, (M). If I.(M) = M this is clear, so assume
I.(M) # M. We fix n € M\ I.(M) and we prove that n ¢ I..1(M). Since n € I.(M)
there exists a splitting ¢ : F¢(M) — R such that p(F¢n) = 1. We observe that R

is F-split. In fact, the multiplication map R - M induces F¢(R) — KEUN F¢(M), and
composing with ¢ we obtain a splitting of Ff(R). In particular, we can choose a

splitting F,R ¥ such that Y(F,(1)) = 1. So we obtain ¢(F.p(F*™'n)) = 1 which
implies n & I.41(M) as claimed.

(4) Since M is torsion-free and finitely generated, there exists an injective map into a
finite free R-module M — R®". We fix a non-zero element n € M. By composing the
previous inclusion with an appropriate projection into one of the factors of R®" we
obtain a map ¢ : M — R such that ¢(n) = r # 0. Since R is strongly F-regular there
exists an e > 0 and ¢ : F(R) — R such that ¢(F¢r) = 1. Therefore ¢(Ffp(n)) =1
which implies that n & I.(M).

O

We need the following lemma by Chevalley, for a proof we refer to [MP21, Lemma 10.14].

Lemma 9.8 (Chevalley). Let (R, m, k) be a complete local ring and M a finitely generated
R-module. Let I C R be an m-primary ideal and {M,},en be a descending chain of R-

submodules of M such that ﬂ M, = {0}. Then there exists an ny € N such that M,, C IM.

neN

Theorem 9.9 (Aberbach-Leuschke). Let (R, m, k) be an F-finite local ring. Then s(R) >0
if and only if R is strongly F-reqular.

Proof. First we prove that if R is not strongly F-regular, then s(R) = 0. We decompose
F¢(R) = R% @& M., where a. = frkg(F¢(R)) and M, does not contain free summands.
By Proposition 9.7 we have that frkg(Ff(R)) = (g (R/I.(R)) [Fk : k] = lg (FE(R/I.(R))).
Since R is not strongly F-regular, there exists an element ¢ € R° such that the multiplication
map R LN F¢(R) does not split for all e > 0. Observe in particular that mF¢(R) +
spanpe gy {Fict C FE(I(R)) for all e > 0. Therefore we obtain

frkp(F(R)) = ER (FZ(R)/FL(I(R)))
Cr (FE(R)/ (mFE(R) + spanp g {Fec}))
(r(FS(R/c) ® R/m)
= [ka : k] - HKg(m, R/c, e)

where the last equality follows from Remark 8.4. By Corollary 8.11, we have HKz(m, R/c, e) <
C - pl4=e for some C' > 0 since dim R/c = d — 1. In particular, dividing by [F°k : k]p® both
sides and taking the limit for e — oo we obtain that s(R) = 0.

Now we prove the converse. First, observe that we can assume that R is complete, since
strong F-regularity, free rank, and rank are preserved under completion. We claim that
there exists an ey > 0 such that for all e > 0 we have the inclusion I.,., C mll To
prove the claim, we fix e > 0 and r € R ~ mPl. Notice that r € R ~ mP’ if and only if
Fer e FER\ mF¢R. For simplicity of notation we set M = F¢R in what follows. Since R is

complete and Cohen-Macaulay (by Theorem 5.25), there exists a canonical module wg. We
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denote by (—)Y = Hompg(—,wg) the canonical dual. We consider the following short exact
sequence
0—K—=R"™ =M =0

where R®" is a finite free R-module. Since M is maximal Cohen-Macaulay, MV is also
maximal Cohen-Macaulay by [BH93, Theorem 3.3.10]. Therefore by the Depth Lemma, K
is maximal Cohen-Macaulay as well. We dualize the previous sequence, and use the fact
that (MV)Y =2 M and Extp(N,wr) = 0 for all MCM R-modules N to obtain a short exact

sequence
0— M5 wi - KY 0.
Now, fix a system of parameters x = 1, ..., z; of R, which is then a regular sequence for R.
Consider the m-primary ideal I = (z). Since the module Torf(R/I, KV) can be computed
as the first Koszul homology module Hy(z; KV), and x is a regular sequence on KV, we
have that Torf(R/I, KV) = 0, and the previous short exact sequence yields the short exact
sequence
0— M/IM 5 w8/ 1uE" — KV /IKY — 0.
Consider the Frobenius non-splitting submodules I.(wg), by Proposition 9.7 (.. Ic(wr) =
(0). Thus Chevalley’s Lemma implies the existence of an index ey > 0 such that [ (wg) C
Iwg. Notice that ey depends only on R and not on M = F{R. Moreover, observe that
L(wE") = I.(wr)®" as a submodule of wE™. As a consequence of the above containment,
we get that I, (wy") C Twy". We now claim that ¢(F¢(r)) ¢ I, (wg™). In fact, if this
was not the case, then we would have that (F¢(r)) € Iwg", and since ¢ is injective we
would get that Ff(r) € IM C mM. A contradiction. It follows that there exists a splitting
@ FOwl" — R such that p(Ffr) = 1. By restricting ¢ to F0(M) = Fét(R) C Fo(wi™)
we obtain a splitting F¢T°°(R) — R sending F¢tr to 1, which is equivalent to saying that
r € R~ I.ie,. This proves the claimed inclusion I, ., € mP.
To conclude the proof, observe that

fI‘kR(F*eJreOR) . fl"kR(FereOR)

rankR(Ff+e°R) [Ff+eok : k}p(e-&-eo)d

1
= WER (R/Iete,)

1 e
)ng (R/m[p ])

= p(eJreg

1
= p—(e-l-eo)d HKR(m, 6).

1
peod

Therefore, taking the limit for e — oo we obtain s(R) > > ( as desired. O

Thanks to the previous theorem, when looking for examples of F-signature we should
restrict to strongly F-regular rings. However, computing explicit examples of F-signature is
a difficult task, and only few cases are known. Rings of invariants of Examples 3.10 and 5.27
are among them.

Example 9.10. Let S = kfxy,...,x4] be a power series ring over an algebraically closed
field of characteristic p > 0 and let G C GL(d, k) be a finite group acting linearly on S

such that p 1 |G|]. We denote by R = S the corresponding invariant ring. We assume
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further that G does not contain pseudoreflections®. This is not really restrictive. In fact, by
Chevalley-Shephard-Todd Theorem if G is generated by pseudoreflections then S¢ is again
a regular local ring. In this setting, using the Auslander correspondence one can convert the
computation of the free rank of F¢(R) into an analogous problem in representation theory
of the group G over k. More precisely, frkg (F(R))) is equal to the number of copies of the
trivial representation of G appearing into the Frobenius twist representation F¢(S/m[),
where m = (z1,...,24). Then, using techniques from representation theory of finite groups,

one obtains .

—ar
Even more, one can prove that frkg (F£(R))) is a quasi-polynomial in p° of degree d, leading

coefficient ‘—(1;|, and "second coefficient” equal to 0.

s(R)

9.3. F-signature and regularity. The goal of this section is to prove that for an F-finite
ring R we have s(R) = 1 if and only if R is regular. The approach we will use is the one
given by Polstra and Smirnov in [PS19]. One implication follows immediately from Kunz’s
Theorem. In fact, if R is regular then by Theorem 8.6 Ff(R) is free for all e > 0, thus
frkg F£(R) = rankg F¢(R) for all e > 0, and consequently s(R) = 1.

In order to prove that s(R) = 1 implies that R is regular, we will need some preparatory
results. We observe that s(R) = 1 implies in particular that R is strongly F-regular by
Theorem 9.9, thus we will assume that R is strongly F-regular throughout the rest of the
section.

Notation 9.11. Let N C M be finitely generated R-modules. We denote by N-rk(M) the
maximal number of N-direct summands appearing in all possible direct sum decomposition
of M.

Lemma 9.12. Let (R,m) be an F-finite and strongly F-regqular local ring. Suppose M is a
finitely generated R-module such that M-rk(F(R)) > 0 for some eq > 0. Then

.. M-1k(FE(R))
] bt Sl el ?2
Pt rankg(F¢(R))

Proof. Suppose that F(R) =2 M @ N. For any e > 0, decompose F£(R) = R%% @ M, where
a. = frkr(F¢(R)) and M, does not contain free R-summands. Then we have FfT0(R) =
Foo(R)®% @ Feo(M,), and thus M®% is a direct summand of FfT(R). Therefore we have
M-rk(F¢t*(R)) > a., and therefore

Moxk(FE(R)) . frkp(F—eo(R)) S(R)

lim inf > lim inf = > (.

e—oo rankgr(F¢(R)) e—oo  rankg(F¢(R))  rankg(Fi°(R))

> 0.

O

Proposition 9.13. Let (R,m, k) be an F-finite and strongly F-regular local ring and let
P C R be a prime ideal. Then the following facts are equivalent:
(1) frkr(F¢(R)) = frkg, (FS(Rp)) for all e > 0;
(2) s(R) = s(Rp).
2An element o € GL(d, k) of finite order is called pseudoreflection if the fixed subspace {v € k% : o(v) = v}

has dimension d — 1. Equivalently, o has eigenvalue 1 with multiplicity d — 1.
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Proof. It frkgp(F¢(R)) = frkg, (F¢(Rp)) for all e > 0, then s(R) = s(Rp) since rankg(F¢(R)) =
rankg, (F¢(Rp)). We prove that (2) = (1). So we assume that s(R) = s(Rp). The inequality
frkr(FS(R)) < frkg, (FS(Rp)) always holds since a free R-summand localizes to a free Rp-
summand. Assume by contradiction that frkr(F°(R)) < frkg, (F°(Rp)) for some ey > 0.
We write F°(R) = R¥%o & M,, with a., = frkg(F(R)). Then (M,,)p must contain a free
Rp-summand. For each e > 0, consider a direct sum decomposition of the form

F¢(R) = REFK(F(R)) g MeEEMeO—rk(Ff(R)) @ N,
We localize at P and count free summands, we obtain
frkp, (FE(Rp)) = frk(FE(R)) + M,,-rank(FY(R)).
This implies

. frkg, (F¢(Rp)) frkp(FE(R)) .. Me-tk(FE(R))
1 P\« > lim ————— 22 4] f—=2 -
SRe) = i e (Fe(Br)) ~ o rankn(Fe(R)) T s en (e ()
.. M.-1k(FE(R))
= 1 f—= : :
s(R) + oo rankr(F¢(R))
By Lemma 9.12 we get that s(Rp) > s(R), which gives a contradiction. O

Theorem 9.14. Let (R,m, k) be an F-finite local ring. Then s(R) = 1 if and only if R is
reqular.

Proof. If R is regular, then F¢(R) is free for all e > 0 by Kunz’s Theorem 8.6, thus
frkp(F¢(R)) = rankg(FF(R)) which implies s(R) = 1. We prove the other implication.
Assume s(R) = 1, then by Theorem 9.9 R is strongly F-regular, in particular it is a domain.
Consider the localization of R at the prime ideal (0) and observe that R = @ is a field,
hence a regular ring. So we have s(Q)) =1 = s(R). By Proposition 9.13, we obtain

frkp(FY(R)) = frko(F7(Q)) = dimg(FI(Q)) = rankg(F7(R))
for all e > 0. So R is regular by Kunz’s Theorem. O

10. APPLICATIONS

In this final section we present some applications of the F-singularities we have discussed.

10.1. Uniform containments between symbolic and ordinary powers.

Definition 10.1. Let R be a ring, and [ C R be a radical ideal. The n-th symbolic power
of I is defined as
I™ = I"Ry N R,

where W = R\ Upeyin(r) -

Examples. (1) Let R = k[z,y,2], and I = (vy,2z,y2). Then I® = (z,y)>N (z,2)?N
(y,2)%. Observe that zyz € I < 1%
(2) Let R = k[z,y, 2]/(a? — yz), and Q = (z,y). Then Q¥ = (y).
(3) Let R = Fy[x1, x2, x3, 24], and @ be the kernel of the F,-algebra homomorphism from
R to F, that sends 21 — 7, zy + tP@+tD 24 s PP+ and z, — tP+D* Then
f=atae, — o™ — a2 4+ 28 € QB Q2
59



Let us start with some properties of symbolic powers that are well-known and easy to
prove. They are here stated for prime ideals, but hold more generally.

Properties 10.2. Let R be a ring, and () € Spec(R). Then

(1) Q" € Q™ for all n € N.
(2) QMQ™ C QU™ for all m,n € N. In particular, (Q(™)™ C Q™.
(3) Q™ C Q™ for all m > n.

Question (Q1). Given n € N, is it true that Q%) C Q™ for k> 02 Since Q¥ C Q™ always
holds, in this case {Q"} and {Q™} describe the same topology (we write {Q"} ~ {Q™}).

It turns out that the answer is affirmative for regular rings.

Theorem (Swanson). In the notation and setup considered above, if {Q"} ~ {Q™}, then
there exists h (possibly depending on Q) such that Q"™ C Q™ for all n.

Theorem 10.3 (Ein-Lazarsfeld-Smith, Hochster-Huneke). Let R be a reqular ring containing
a field, and Q € Spec(R) be a prime ideal. Let h = max{1,ht(Q)}. Then Q"™ C Q" for
all integers n € N. In particular, if R has finite Krull dimension d, and we let H =
max{1,d — 1}, then Q™ C Q" for allmn € N and all Q € Spec(R).

Before proving the theorem, we need two basic lemmas.

Lemma 10.4. Let R be a commutative Noetherian ring, and I, J be two ideals. Then J C I
if and only if J, C I, for all p € Assg(R/I).

Proof. The “only if” direction is trivial. For the converse, assume that J, C I, for all
p € Assgr(R/I), and let x € J. Consider the ideal [ :g x, and the injection

R
0 T o) R/I

that we have already discussed in previous sections. Because of this, we have that Assg(R/I g
r) C Assg(R/I). Let Q € Assg(R/I :g x), and observe that (I :r 2)g = Ig :r, * = Rg,
since Q € Assgr(R/I) and z € Jg C Iy by assumption. It follows that (R/I g z)g = 0,
which contradicts the fact that @ € Assg(R/I :g ) C Suppg(R/I g ). O

Lemma 10.5. Let R be a regular ring of prime characteristic p > 0, and ) € Spec(R).
Then Assr(R/QP) = {Q}.

Proof. Since \/QIPl = @, it is clear that Q € Min(QP)) C Assz(R/Q). For the converse,
let P € Assg(R/QW), so that we can write P = Q" :x o for some a € R. Tt is clear
that Q C P. For the converse, let » € P. Since ar € QW a fortiori we have ar? € QP
Equivalently, o« € QP :gp » = (Q :z 7)!, where the last containment follows from the
flatness of Frobenius, Theorem 2.7. If r ¢ @, then @ :g r = @, because () is a prime. It
follows that o € Q) hence P = Q! :p o = R, a contradiction. Therefore r € @, and the
proof is complete O

We are now ready to prove Theorem 10.3. The generality in which we present it here, as

well as its proof, is due to Hochster and Huneke.
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Proof of Theorem 10.5. We only show the theorem for the prime characteristic p > 0 case.
The equal characteristic 0 case is done by reduction to positive characteristic.

For the second claim, observe that if ht(Q) = d, then @ is maximal. Then QU™ = Q" C
Q" for all n. If ht(Q) < d—1, then H > h = max{1,ht(Q)}, and the claim follows from the
first part.

For the first part, first assume that ht(Q) = 0. Since R = R; X ... x Ry is a product of
regular domains, () must be of the form Ry x ... x 0 x ... X R;. Then, as h = 1, we have
QU™ = @ = Q", and the claim is proved. Now assume that ht(Q) > 0, so that h = ht(Q).

We start by proving a stronger statement for special values of n, namely, powers of p.

Claim. For all ¢ = p°, we have QM C Q4.

Proof of the Claim. Fix ¢ = p°. By Lemma 10.4, in order to show the containment we can
localize at the associated primes of Q4. By Lemma 10.5, we have Assz(R/Q) = {Q}.
Therefore we can show the containment by checking that it holds after localizing at Q.
However, Q(’W)RQ = (QRg)™, and since Ry is regular, its maximal ideal QR is generated
by dim(Rg) = ht(Q) elements, say 1, ..., 7. But an element in (QRg)" can be written
as ol - -xzh, where |i| =41 + ...+ 4, > gh. By the pigeonhole principle, we must have
i; > q for some j, otherwise |i| < hg. But then (QRg)™ C (QRg)¥, and the claim is
proved. O

Since Q9 C @4, the theorem is proved for all n = p°. For the other values, fix n € N. For
q = p° > n, write ¢ = a.n + r, with 0 < r < n. We have

(QUm) € (QU)™™™ € (QUm)™ € (QUem)"
Choose 0 # c € Q"*. Observe that ¢ is independent of e. We have

c (Q(hn))[q} C th2_<Q(haen))n C (Q(hr)@(haen))” C (Qh(aenJrr))" _ (Q(hq))” C (Q[q})" _ (Qn)[‘I] _

Since the containment holds for all ¢ = p® > 0, we have Q"™ C (Q")" = Q", because
regular rings are weakly F-regular by Theorem 2.10. U

10.2. Direct summands of regular rings are Cohen-Macaulay. Let ¢ : R <— S be a
ring inclusion. We say that the inclusion is split (or that R is a direct summand of S) if
there exists an R-module map ¢ : S — R such that ¢ o p = idp.

Theorem 10.6 (Hochster-Roberts / Hochster-Huneke / Heitmann-Ma). Let R be a direct
summand of a reqular ring S. Then R is Cohen-Macaulay.

When (R, m) is local, we can always reduce to the case when S (hence R) is a domain, as
a consequence of the following lemma.

Lemma 10.7. Let (R, m) be a direct summand of a ring S = Sy X ... x S;. Then R is a
direct summand of S; for some 1.

Proof. Let b : S — R be the splitting, and let e,...,e; be the idempotents in S that
correspond to lg,,...,lg, inside S. Then

L=9Y(1)=¢(er +...+e) =v(er) + ... +¢(er).
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Since R is local, there exists ¢ such that ¢(e;) is a unit in R. Consider the natural inclusion
and projection S; — S — S;. Then ¢; = ¢ makes R into a subring of S;. We then have

R Pi SZ L g ¥ R P(e;)” R
1 Lg, € Ple) — 1
so that -(¢(e;)) 1ot : S; — R gives the desired splitting of ;. O

Since regular rings are products of finitely many regular domains, Lemma 10.7 allows
indeed to reduce from the case when (R, m) is a direct summand of a regular ring, to the
case when (R, m) is a direct summand of a regular domain.

Remark 10.8. Observe that, if (R, m) is a complete local ring that is a direct summand of a
regular ring S, then putting together Lemma 10.7, Proposition 3.9, and Theorem 3.7, we get
that R is Cohen-Macaulay. This proves Theorem 10.6 in the case when (R, m) is complete
local.

To prove Theorem 10.6 in its full generality, we need to reduce to the case when (R, m) is
complete local. Let ¢ : R < S be a split ring map, with S regular. Let m € Max(R), and
let W = (R~ m). Then ¢ induces an inclusion R, — Sw. Moreover, the original splitting
¥ S — R induces a map v : Sy — R, that still splits the inclusion R, C Sy . Since
localization of a regular ring is regular, and a ring is Cohen-Macaulay if and only if every
localization at a maximal ideal is, we may henceforth assume that (R, m) is local, and it is
a direct summand of a regular ring S.

Proposition 10.9. Let © (R m) — S be a pure map, and assume that S = Sw where
W = o(R~m). Then R — S is pure, where S is the completion of S at the ideal mS.
Moreover, if S is regular, so is S.

Proof. First, observe that S — S is faithfully flat (it is flat, and maximal ideals in S are
maximal ideals of S that contain mS. Since S = Sy, by assumption, these are all the maximal
ideals of 5, so the map Spec(S) — Spec(S) is surjective; these two conditions give faithful
flatness). Then R — S is pure. Tensorlng with E, we then have an injection F —» S Qr E,
and since I/ = Ez(k), we have R ®p Ea(k) — S ®p Eg(k). By Proposition 7.4, this gives
that B — S is pure.

For the second claim, we note that the completion of S at a maximal ideal ( is isomorphic

to the completion of Sg at the ideal ()Sg, hence regular. It follows that S is regular at every
maximal ideal, hence regular. 0

Lemma 10.10. Let ¢ : (R,m) — S = 5] X ... X S; be a pure ring map. There exists i such
that (R, m) — S, is pure.

Proof. By assumption, the image of 1 under ¢g is not zero in S ®r E = P(S; ®r E).
Therefore, the image u € E of 1 € k is not zero in S; ® E for some ¢, and thus R — 5; is
pure by Proposition 7.4. 0

We are now ready to prove Theorem 10.6 in full generality.
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Proof of Theorem 10.6. Assume that R is a direct summand of a regular ring S. First, we
can localize at m and W = ¢(R ~ m), and complete by Proposition 10.9. By Lemma 10.10,
since regular rings are products of regular domains, we may assume that (R,m) — S is a
pure map, with .S a regular domain and R complete local. Remark 10.8 now applies, and
concludes the proof. O

10.3. Direct Summand Conjecture (Theorem) in characteristic p. Let (R, m) be a
complete regular local ring, and let « : R C S be a finite extension. Then R is a direct
summand of R, that is, there exists ¢y € Hompg(S, R) such that 1. = idg.

Remark 10.11. Let P € Min(R), such that PN R = 0. Observe that R C S/P is still a finite
extension, and if R is a direct summand of S/P, then S — S/P — R gives a splitting of
RCS.

Theorem 10.12. Let R C S be a finite extension of integral domains. For all ideals I C R
we have ISN R C I*.

Proof. Let W = R°. Since Ry is a field, the inclusion Ry, C Sy splits. Therefore, there
exists a map ¢ € Hompg,, (Sw, Rw) which splits the inclusion. Since S is a finite R-module,
by Remark 5.23 there exists an R-linear map ¢ : S — R and ¢ € R° such that ¢(1) = ¢ # 0.
Let z € I, so that € IS N R. Raising to the power ¢, this gives 29 € I4S. Applying the
map 1, this gives 1(2?) = 29 (1) = ca? € (I19S) C I9. As this happens for all ¢, and
c € R°, we have that x € I*. O

Remark 10.13. We have seen in Corollary 5.5 that being F-pure and being F-split are equiv-
alent for F-finite rings. Using the same principle (with the same proof), one can show that
a finite map ¢ : R — S is split if and only if it is pure.

Theorem 10.14. Let R be a regular ring, and let ¢ : R — S be a finite ring extension.
Then R is a direct summand of S.

Proof. First we reduce to the case in which R is local. Observe that ¢ : R — S is split if and
only if the natural map Hompg(S, R) — Hompg(R, R) is surjective (arguing as above). This
map is surjective if and only if this is true after localizing at every maximal ideal m. In turn,
since S is a finitely generated R-module, this is equivalent to the map Hompg (Sw, Ryn) —
Hompg, (Rm, Rm), where W = ¢(R ~\ m), being surjective for all m € Max(R). Finally, this
is equivalent to the map R, — Sw being split for all m € Max(R), and W as above. Thus,
we reduced to the case when R is local. Let x1,..., x4 be a full system of parameters, and
for t > 0 let I, = (a%,...,25). Since R is regular, hence Gorenstein, R is approximately
Gorenstein with respect to the family {/;}. By Remark 10.13, it suffices to show that
¢ : (R,m) — S is pure, and by Proposition 7.4 this is equivalent to ¢, : R/I; — S/I;S being
injective. By Theorem 10.12 we have ;SN R C I = I, since R is regular hence weakly
F-regular. But this exactly says that the map R/I, — S/I,S is injective for every t > 0, as
desired. U

10.4. Regular local rings of characteristic p > 0 are UFDs. Of course, this is true
regardless of the characteristic, but thanks to the flatness of the Frobenius map there is an
alternative proof in characteristic p > 0.

Theorem 10.15. Let (R,m) be a regular local ring of characteristic p > 0. Then R is a

UFD.
63



Proof. We may assume that d = dim(R) > 2, otherwise the claim is trivial since R is either
a field or a DVR. Since R is regular, it is normal (R; and Ss). Therefore R is a UFD if and
only if every height one prime is principal. Let P be a prime of height one. For all ¢ = p°,
we claim that Pl = P@, Clearly we have Pld C P? C P = (PRp)*N R = (PRp)9NR,
where the last equality follows from the fact that Rp is a DVR, hence PRp is principal.
By Lemmas 10.4 and 10.5, since the only associated prime of P9 is P we can check the
equality after localizing at P, and locally we have PRp = ((PRp)!4 N R)Rp. In particular
we obtain that P4 = P%. If P = (fi,..., f,), then it follows that p(P?) < t. This implies
that the fiber cone F(P) = ,,», P"/mP" has Krull dimension one (this dimension is called
the analytic spread of P). If we let kK = R/m, we can then find an element z € P and a
Noether normalization k[z] C F(P). Since this map is finite, there exists N > 1 such that
PN*T = 27PN for all r > 1. In particular, (z) and P have the same integral closure. Since
R is normal, principal ideals are integrally closed, and therefore P = P = (x). O
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